

React

https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/
https://twitter.com/tutorialrdotcom
https://www.tutorialr.com/
https://www.tutorialr.com/workshops/
https://www.buymeacoffee.com/tutorialrdotcom

1

Contents

Contents
Introduction.. 2

What is React? .. 2

What is Visual Studio Code? ... 3

Setup and Start ... 4

React ... 4

Visual Studio Code .. 7

Components and Props .. 11

Components ... 11

Props ... 11

CSS and Styles .. 13

CSS ... 13

Styles ... 13

Context .. 14

State ... 15

Events... 16

Hooks ... 17

Ref ... 19

Conditions and Lists ... 20

Conditions ... 20

Lists .. 21

Forms ... 23

Controlled .. 23

Uncontrolled ... 24

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

2

Introduction

What is React?
React is a JavaScript library for building interactive user interfaces created by Facebook that allows you to

build Applications for the web and even take this further with React Native to build native mobile apps.

React uses JavaScript which is a core programming language and development platform used on the web.

JavaScript allows the web to be more interactive and offer dynamic content, React also requires Node.js

which is a JavaScript runtime that allows Applications to be used such as React you can find out more

about Node.js at nodejs.org. React along with any Applications created also depend on npm packages,

npm is a software registry for applications, you can find out more about npm at docs.npmjs.com.

React makes it straightforward to create interactive user interfaces, as well as have simple views for each

state in your Application, and React will update efficiently only changing what needs to be changed when

using Components, which can manage their own state and can compose them to make more complex

layouts. React can also allow new features on existing JavaScript projects to be created without rewriting

any existing code for an Application and you can find out more about React including documentation,

examples and more at reactjs.org.

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/
https://nodejs.org/
https://docs.npmjs.com/
https://reactjs.org/

3

What is Visual Studio Code?
Visual Studio Code will help create React applications even more easily, it is a free Integrated

Development Environment or IDE created by Microsoft.

Visual Studio Code supports syntax highlighting which will add colours to certain parts of the text and

make it easy to make sure everything is being entered correctly when writing React Applications. You can

also use Visual Studio Code to edit any other JavaScript, CSS, HTML and more, making more than just

creating React applications more straightforward. If you want to find out more about Visual Studio Code

along with documentation, extensions and more you can visit code.visualstudio.com.

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/
https://code.visualstudio.com/

4

Setup and Start

React
React requires an Active or Long Term Support / LTS version of Node.js which if you don’t have it

already, you can Download the LTS version for your Platform such as Windows from nodejs.org.

Once Downloaded, you can then Install it by following the steps in the Installation Wizard

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/
https://nodejs.org/

5

Once Node.js has been Installed, or if it was already Installed, then if using Windows you need to go to

Start then search for Command Prompt and then select it.

Once in the Command Prompt you can use mkdir to Create a new Folder, then cd to Change Directory

to this new Folder as follows:

Then you can type in the following to create a single-page Application using the Create React App

command with npx Package Runner which comes with Node.js and then press Enter:

You will be asked Ok to proceed? You can just accept the default by pressing Enter. After this in the

Command Prompt you will need to change to the Folder for the Workshop by typing in the following

command and then press Enter:

Once done while still in the Command Prompt you can type in the following command followed by Enter

which will Build and Serve the Application which will also display it in your Browser you need to keep the

Command Prompt open but you won’t need to do anything else using this Command Prompt.

mkdir React

cd React

npx create-react-app workshop

cd workshop

npm start

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

6

Should you need to you can get information, documentation and more about React at reactjs.org.

This Workshop supports at least Version 15 of React with Version 18 being used throughout.

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/
https://reactjs.org/

7

Visual Studio Code
To be able to Edit your Application you will need to Download, if you don’t have it already, Visual Studio

Code for your Platform such as Windows from code.visualstudio.com.

Once Downloaded, you can then Install it by following the steps in the Installation Wizard

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/
https://code.visualstudio.com/

8

Once Visual Studio Code has been Installed, or if it was already Installed, then if using Windows you

need to go to Start then search for Visual Studio Code and then select it.

Once Visual Studio Code has opened from the Menu choose File then Open Folder... then select the

Folder for your Application e.g. C:\React\workshop. Then once the Folder has been opened Select the Yes, I

trust the authors option in the Do you trust the authors of the files in this folder? if this is displayed.

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

9

Within Visual Studio Code will be the Explorer you can then Expand the Folder for src to find App.css file

which defines any CSS Styles for the Application you should Clear the contents of this file so that it is blank

as follows:

Then in Visual Studio Code from the Menu select File then Save to save these Changes to App.css. You

should always do this when you make any Changes to App.css and other files.

You will also find the main Component for the Application which is App.js which is where you will be

spending most of your time in the Workshop.

You will also find App.test.js and see other files like these but they won’t be used in the Workshop but they

are used when Testing a React Application.

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

10

Within the Component of App.js you should also clear the contents and then in App.js type in the following:

Then in Visual Studio Code from the Menu select File then Save to save these Changes to App.js. You

should always do this when you make any Changes to App.js and other files.

When you need to add or declare a Class for the Component of App.js in the Workshop, then these should

be placed below the Comment of // Classes for each part of the Workshop you can also optionally

create files for them such as Class.js instead if you want to.

Then when you need to add or declare a Variable for App.js then these should be placed on their own line

below the Comment of // Variables

Finally when you need to add a Method for App.js then these should be placed below the Comment of //

Methods for each part of the Workshop.

You can use the same React Application for each part of the Workshop and you do not need to remove

anything else unless explicitly told to do so.

import React from 'react';

import './App.css';
// Classes

// Variables

// Methods

function App() {
 return (
 <div className="App">

 </div>
);
}

export default App;

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

11

Components and Props

Components
Components in React can be Function or Class based and can use Inputs called Props. Function based

Components are the simplest kind, like the Component for the Application of App.js.

After following Setup and Start in Visual Studio Code within the Explorer in the Folder of src in the

Component for the Application of App.js below the Comment for // Variables type in the following

Variable:

To use this Variable in the HTML you can do so by enclosing it with curly braces of { and } by typing in

below <div className="App"> the following:

You can then select the Browser that was opened with npm start from the Command Prompt and you

should see the text Hello World displayed in a h1 Tag.

Props
You can also add a Class based Component to use Props. To do this, return to Visual Studio Code then in

the Component for the Application of App.js below the Comment for // Classes type the following

Class:

This Class for Message will extend the React.Component which has a Method for render and within this

it uses a value of props for the Props and displays this within an h2 element using JSX which is an

extension to JavaScript to make working with Elements in HTML much simpler.

To use this Component below <h1>{message}</h1> type in the following:

This will display the Hello Again! message in a h2 Tag. You can select the Browser that was opened with

npm start and you should see the text Hello Again!

const message = 'Hello World';

<h1>{message}</h1>

class Message extends React.Component {
 render() {
 return <h2>{this.props.value}</h2>;
 }
}

<Message value="Hello Again!"/>

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

12

Function based Components can also take advantage of Props, back in Visual Studio Code for the

Component of App.js, below the Comment for // Variables and after any previously declared Variables,

type in the following Variable:

To add a Function based Component, type below the Comment for // Methods the following Method:

To use this Component below <Message value="Hello Again!"/>, type in the following:

If you switch to the Browser that was opened, you will see the Date being displayed as Sun Jun 23 1912

which is Alan Turing’s birthday, a pioneer in the field of computing.

const dateOfBirth = new Date('23-June-1912');

function AsDate(props) {
 return <div>{props.value.toDateString()}</div>
}

<AsDate value={dateOfBirth}/>

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

13

CSS and Styles

CSS
In React you can apply CSS Styles either for defined CSS with className. After following Setup and Start

and Component and Props in Visual Studio Code from Explorer in the Folder of src define some CSS for

the Application in App.css by typing in the following:

In the Component of App.js below the Comment for // Variables and after any previously declared

Variables, type in the following Variable:

This will create a list that then will be connected with ' ' using join as CSS needs to be defined when

used in the HTML as a String with className. In Visual Studio Code while still in the Component of

App.js below const dateOfBirth = new Date('23-June-1912'); type in the following:

If you switch over to the Browser that was opened with npm start from the Command Prompt it will

have the Text of Contrast in white with a black Background.

Styles
In React you can use style for CSS Styles, you defined these as Objects, to define a Style in Visual Studio

Code from Explorer within the Folder of src in the Component of App.js below the Comment for //

Variables and after any previously declared Variables, type in the following Variable:

You can use this with style enclosed in curly braces as { and } below <div><span

className={contrast}>Contrast</div> by typing the following:

If you switch over to the Browser that was opened with npm start you will see the Text of Highlighted with

a Background of yellow.

.inverted {
 color: white;
 background-color: black;
}

.large {
 font-size: 2.0em;
}

const contrast = ['inverted', 'large'].join(' ');

<div>Contrast</div>

const style = { backgroundColor: 'yellow' };

<div>Highlighted</div>

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

14

Context
Context allows data to be used at any Component level without having to pass Props down at each level.

After following Setup and Start, Component and Props and CSS and Styles in Visual Studio Code from

Explorer in the Folder of src in the Component of App.js below the Comment for // Variables and after

any previously declared Variables, type in the following Variable:

This will create an ImageContext using createContext with a default of an empty String of ''.

You can use this Context within the Component for the Application of App.js by typing below the

Comment for // Methods and after any previous Method the following Method:

The Component will use useContext to get the Image then will return an img with the src set to the

Value in the Context, to do this within the Component for the Application of App.js type below

<div>Highlighted</div> the following:

This will set the Context and then use the Component to display the Image, this Component could be

nested within another Component and this would still work no matter how many levels there were, this

Context would also be available to those Components so could use this in multiple places if needed.

Back in the Browser that was opened with npm start you should see a Grinning Face displayed, image

courtesy of openmoji.org.

const ImageContext = React.createContext('');

function Image() {
 let image = React.useContext(ImageContext);
 return
}

<ImageContext.Provider value="https://openmoji.org/data/color/svg/1F600.svg">
 <Image/>
</ImageContext.Provider>

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/
https://openmoji.org/

15

State
State allows for the storage of values that can be modified or used to control what should be or what is to

be displayed. After following Setup and Start, Component and Props, CSS and Styles and Context from

Explorer in Visual Studio Code from the Folder of src in the Component of App.js below the Comment

for // Classes and after any previously declared Classes, type in the following Class:

This class has an event in the Method for change this uses setState to set some State which will be the

value from the Event. This Component has a constructor which can be provided with Props if needed

to set the initial State and then there is the Method for render which will output an input which when

changed or onChange will invoke the Method of change and the value in the State will be displayed in a

h2 Tag.

To use this Component in the Component of App.js below </ImageContext.Provider> type in the

following:

If you switch over to the Browser that was opened previously and then type anything into the input it will

be displayed below it in in a h2 Tag.

class Change extends React.Component {
 change = event => {
 this.setState(
 { value: event.target.value }
);
 }

 constructor(props) {
 super(props);
 this.state = {
 value: props.value
 }
 }

 render() {
 return (
 <div>
 <input type="text" onChange={this.change}/>
 <h2>{this.state.value}</h2>
 </div>
);
 }
}

<Change/>

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

16

Events
Events in React which is similar to handling events on elements however Events in React are named using

camelCase and with JSX a Method is passed surrounded by curly braces of { and }.

After following Setup and Start, Component and Props, CSS and Styles and Context from Explorer in

Visual Studio Code from the Folder of src to add a Method to be called from an Event within the

Component of App.js, below the Comment for // Methods and after any previous Methods type in the

following Method:

This function will display an alert with the value of message when showMessage is called. This will be

called from an Event on a button when it is clicked or onClick by typing in below <Change/> the

following:

You can select the Browser opened with npm start from the Command Prompt, in the Browser you will

see a button labelled Show Message which when Clicked will display an alert displaying the Message of

Hello World.

function showMessage() {
 let message = 'Hello World';
 alert(message);
}

<button type="button" onClick={showMessage}>Show Message</button>

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

17

Hooks
Hooks allow React features to be used without having to use a Class for State and Effects as well as being

able to create your own.

To use the Hook for State after following Setup and Start, Component and Props, CSS and Styles,

Context and Events in Visual Studio Code from Explorer in the Folder of src near the top of the

Component of App.js after import React from 'react'; type in the following:

This will allow Hook for useState to be used. Then while still within the Component of App.js below the

Comment for // Methods and after any previous Methods type in the following Method:

This will set the Variable of isSelected to be used for the State along with a Callback which will be used

to change the value in the State.

Then for the return there is a button that when clicked or onClick will invoke the Callback and will

change the value using the ! operator which means not so that when isSelected is false will become

true and the fontWeight of the a will be bold and when isSelected is true it will become false and

the fontWeight of the button will be normal.

The ? operator is used to define the behaviour when the Value is true before the : and false after it.

Again while still in the Component of App.js type in the following below <button type="button"

onClick={showMessage}>Show Message</button>:

Go to the Browser that was opened and Click the button with Toggle Style on it, this Text will toggle

between being bold or normal when the button is Clicked.

import { useState } from 'react';

function ToggleStyle() {
 const [isSelected, selected] = useState(false);
 return (
 <div>
 <button style={{fontWeight: isSelected ? 'bold' : 'normal' }}
 onClick={() => selected((value) => value = !value)}>Toggle Style</button>
 </div>
);
}

<ToggleStyle/>

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

18

To use the Hook for Effects which will perform Side Effects in Components. Near the top of the

Component of App.js after import { useState } from 'react'; type in the following:

This will add the Hook for useEffect, then to use this in the Component of App.js below the Comment

for // Methods and after any previous Methods type in the following Method:

This Component also uses useState and then defines a Method that will use the Callback for change to

update the Value, the initial size will be passed in from the Props.

Then there is resize which will perform the updates using change to adjust the value of size which is

used in the following Methods for decrease to reduce the Value and increase to make the Value larger.

Then useEffect is used to update the h1 from the first part of the Workshop to match the size then the

Method for render is used to output the Elements including button to call increase and decrease when

they are clicked or onClick and then a span to display the current size and to style the Element the

same way.

Then you can use this Component with the value of 30 by typing in below <ToggleStyle/> the following:

In the Browser you can use the Sizer to change the font-size of itself and at the top the h1 of Hello World!

import {useEffect } from 'react';

function Sizer(props) {
 const [size, change] = useState(props.value);
 const resize = (delta) => change(() => Math.min(40, Math.max(8, + size + delta)));
 const decrease = () => {
 resize(-1);
 }
 const increase = () => {
 resize(+1);
 }

 useEffect(() => {
 document.getElementsByTagName('h1')[0].style.fontSize = size + 'px';
 })

 return (
 <div>
 <button type="button" onClick={decrease} title="Decrease">-</button>
 <button type="button" onClick={increase} title="Increase">+</button>
 Font Size: {size}px
 </div>
);
}

<Sizer value="30"/>

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

19

Ref
Ref allows access to DOM or React Elements that have been created. After following Setup and Start,

Component and Props, CSS and Styles, Context, Events and Hooks from Visual Studio Code from the

Explorer in the Folder of src and in the Component of App.js below the Comment for // Variables and

after any previously declared Variables, type in the following Variable:

This will use createRef to create the Ref then to use this in the Component of App.js below the Comment

for // Methods and after any previous Methods type in the following Method:

This Component defines a Method for show that will display the current contents of the Ref value with

an alert and will display an input using the ref of inputMessage to get the value of the input then

when the button is Clicked or onClick this will call the Method for show to display the message.

To use this Component, while still within the Component of App.js below <Sizer value="30"/> type in

the following:

In the Browser opened with npm start from the Command Prompt there should be a Button called

Show that when Clicked will Display an alert with anything that was typed in the Input before it.

const inputMessage = React.createRef();

function MessageInput()
{
 const show = () => {
 alert(inputMessage.current.value);
 }

 return (
 <div>
 <input type="text" ref={inputMessage}/>
 <button type="button" onClick={show}>Show</button>
 </div>
);
}

<MessageInput/>

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

20

Conditions and Lists

Conditions
Conditions can be used to control HTML output in React this is done using standard JavaScript such as

if and switch. After following Setup and Start, Component and Props, CSS and Styles, Context, Events,

Hooks and Ref return to Visual Studio Code and within the Component of App.js found in the Folder of

src below the Comment for // Methods and after any previous Methods type in the following Method:

This will set the Variable of isShown to be used for the State along with a Callback which will be used to

change the value in the State.

There is a Variable for message which used with if when isShown is true will be set to a h2. Then for the

return there is a button that when clicked or onClick will invoke the Callback and will change the value

using the ! operator which means not so something that is false will become true and something that is

true will become false.

Then message will be used to either be '' when isShown is false and message was never set to anything

else, or when isShown is true it will be set to the h2. To use this in the Component of App.js type below

<MessageInput/> the following:

If you switch over to the Browser there will be a button of Click Here when Clicked will show then hide a

h2 below with the Text of Hello World!

function Toggle() {
 const [isShown, toggle] = useState(false);
 let message = '';
 if(isShown)
 {
 message = <h2>Hello World!</h2>
 }
 return (
 <div>
 <button onClick={() => toggle((value) => value = !value)}>Click Here</button>
 {message}
 </div>
);
}

<Toggle/>

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

21

Lists
Lists can be displayed using map which will take an Array of Numbers and allow their values to be

displayed for each item, back in Visual Studio Code an Array can be defined below the Comment for //

Variables of the Component of App.js and after any previously declared Variables, by typing in the

following Variables:

The Variable for items is an Array denoted with [and] and then there is itemElements which will

represent each item using a li or List Item this is also used with a key as this is needed for items in a List

when using React. To display the items type below <Toggle/> the following:

This will place the li Elements in their appropriate Parent which in this case is a ul for an Unordered List

or Bulleted List, and will set the style to align the items to the left of the screen.

To see this switch over to the Browser that was opened with npm start from the Command Prompt there

will be a Bulleted List showing the List Items of Hello and World.

You can also combine a List with a Component using switch to display values from a Variable back in

Visual Studio Code below the Comment for // Variables for the Component of App.js and after any

previously declared Variables, by typing in the following Variable:

This will define a list of items that will be used in the Component of App.js

const items = ['Hello', 'World'];
const itemElements = items.map((item) =>
 <li key={item}>{item}
);

<ul style={{textAlign:'left'}}>{itemElements}

const values = [
 {
 name: 'None',
 status: ''
 },
 {
 name: 'Danger',
 status: 'red'
 },
 {
 name: 'Warning',
 status: 'yellow'
 },
 {
 name: 'Proceed',
 status: 'green'
 }
];

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

22

While still in the Component of App.js below the Comment for // Classes and after any previously

declared Classes, type in the following Class:

This Component is comprised of a single Method for render within this is a Method defined for display

this contains the switch statement to control the span that will be displayed and then there is elements

that will display this within an li which will then be returned inside an ul which is an Unordered List or

Bulleted List with the style to align it to the left.

In the Component of App.js below <ul style={{textAlign:'left'}}>{itemElements} type the

following:

If you switch over to the Browser that was opened, there will be another Bulleted List showing the List

Items of None, then Danger with a red Background, Warning with a yellow Background and Proceed with a

green Background.

class Elements extends React.Component {
 render() {
 const display = (value) => {
 switch(value.status)
 {
 case 'red':
 return Danger
 case 'yellow':
 return Warning
 case 'green':
 return Proceed
 default:
 return None
 }
 }
 const elements = (values) =>
 {
 return values.map((item) =>
 <li key={item.name}>{display(item)}
);
 };
 return (
 <ul style={{textAlign:'left'}}>
 {elements(this.props.value)}
);
 }
}

<Elements value={values}/>

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

23

Forms
Forms in React can either be Controlled where each Element in the Form maintains their own state and

this is updated based on Input by the user and is designed for smaller Forms to update a few Values or

Uncontrolled where data for the Form is handled by the DOM itself.

Controlled
To create a Controlled Component after following Setup and Start, Component and Props, CSS and

Styles, Context, Events, Hooks, Ref and Conditions and Lists return to Visual Studio Code and within

the Component of App.js found in the Folder of src below the Comment for // Methods and after any

previous Methods type in the following Method:

This Component uses useState to store State it defines handleSubmit to show an alert with name and

in the form it has an input which when changed or onChange will call setName to set the Value in State

and on submitting the Form the handleSubmit will be called. While still in the Component of App.js below

<Elements value={values}/> type the following:

If you switch over to the Browser that was opened with npm start from the Command Prompt there

should be a Button called Controlled that when Clicked will Display an alert with anything that was typed

in the Input before it.

function Controlled() {
 const [name, setName] = useState('');
 const handleSubmit = (event) =>
 {
 event.preventDefault();
 alert(name);
 }

 return (
 <form onSubmit={handleSubmit}>
 <input id="name" type="text"
 onChange={(event) => setName(event.target.value)}/>
 <input type="submit" value="Controlled"/>
 </form>
)
}

<Controlled/>

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

24

Uncontrolled
To create an Uncontrolled Component back in Visual Studio Code and within the Component of App.js

found in the Folder of src below the Comment for // Methods and after any previous Methods type in

the following Method:

This Component uses createRef to create a Ref and defines handleSubmit to show an alert with the

value and in the form it has an input which can be typed into that uses the ref to set the value and on

submitting the Form the handleSubmit will be called. While still in the Component of App.js below

<Controlled/> type in the following:

If you switch over to the Browser that was opened with npm start from the Command Prompt there

should be a Button called Uncontrolled that when Clicked will Display an alert with anything that was

typed in the Input before it and that concludes this Workshop about React from tutorialr.com!

function Uncontrolled() {
 let value = React.createRef();
 const handleSubmit = (event) =>
 {
 event.preventDefault();
 alert(value.current.value);
 }

 return (
 <form onSubmit={handleSubmit}>
 <input id="name" type="text" ref={value}/>
 <input type="submit" value="Uncontrolled"/>
 </form>
)
}

<Uncontrolled/>

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/
https://www.tutorialr.com/

