

Blazorfy

Blazor × Spotify

https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/
https://twitter.com/tutorialrdotcom
https://www.tutorialr.com/
https://www.tutorialr.com/workshops/

1

Contents

Contents

Setup ... 3

.NET ... 3

Project .. 4

Packages ... 5

Visual Studio Code .. 6

Start ... 7

Workspace .. 7

Extension ... 8

Settings .. 9

Imports ... 10

Provider .. 11

Namespaces ... 12

Class ... 13

Program.. 14

Authentication .. 15

Account .. 15

Constants ... 21

Members .. 22

Methods ... 22

Constructor ... 23

Property .. 23

Login .. 24

Logout... 24

Logged In... 25

Handle Code ... 26

User .. 26

Component ... 27

Index .. 29

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

2

Library .. 33

Categories ... 33

Playlists ... 42

Albums .. 54

Podcasts ... 64

Finish .. 72

Blazor... 72

Spotify ... 73

Summary .. 74

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

3

Setup

.NET

.NET includes Blazor so you will need to Download and Install the latest version of the .NET SDK, which if

you don’t have it already you can Download it for Windows or Mac using a new Browser tab at dot.net

Once Downloaded you can open to Install the .NET SDK by following the steps in the Installation Wizard

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/
https://dot.net/

4

Project

If the .NET SDK has been Installed, then if using a Mac you then need to go to Finder then search for

Terminal and then select it or if using Windows you need to go to Start then search for Command

Prompt and then select it so it launches as follows:

Once in the Command Prompt or Terminal you will need to create a new Folder, you can use mkdir

followed by the name of the Folder e.g. Workshop and then press Enter.

Then you will need to switch to this Folder, to do this from the Command Prompt or Terminal type in the

following command and then press Enter:

Once in this Folder you can create a new Project using the .NET CLI that was Installed as part of the .NET

SDK. While still in the Command Prompt or Terminal type in the following and then press Enter:

This will create a new Project for Blazor using WebAssembly or wasm. Once the Project has been created

in the Command Prompt or Terminal you will need to change to the Folder for the Workshop by typing

in the following and then press Enter:

Please make a note of the Folder where you have created the Project e.g. C:\Workshop\Blazor for later in

the Workshop.

mkdir Workshop

cd Workshop

dotnet new blazorwasm -o Blazorfy

cd Blazorfy

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

5

Packages

While still in the Command Prompt or Terminal you will add some Packages that will be used in Blazorfy

to add the first Package of Blazored.LocalStorage, type the following and then press Enter:

This will add the Package for Blazored.LocalStorage created by Chris Sainty which provides access to local

storage for Blazor applications, this will be used to save and load values in the Browser.

Then while still in the Command Prompt or Terminal you can add the second Package of

Spotify.NetStandard type the following and then press Enter:

This will add the Package for Spotify.NetStandard created by Peter Bull which provides access to the

Spotify Web API and will be used to obtain information from Spotify.

You can then close this Command Prompt or Terminal as it will no longer be needed in the Workshop.

dotnet add package Blazored.LocalStorage

dotnet add package Spotify.NetStandard

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

6

Visual Studio Code

Visual Studio Code is a free Integrated Development Environment or IDE created by Microsoft and will

be used in the Workshop and will make writing the application easier. You can Download it, if you don’t

have it already, for Windows or Mac from a new Browser tab code.visualstudio.com

Once it has been Downloaded, you can then Install it by following the steps in the Installation Wizard

Once you’ve installed .NET, used dotnet new blazorwasm -o Blazorfy, added the Packages and

installed Visual Studio Code then you’re ready for the Workshop.

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/
https://code.visualstudio.com/

7

Start

Workspace
Once Visual Studio Code has been Installed, or was already Installed but if it is not already running then if

using Windows you need to go to Start then search for Visual Studio Code and then select it or on Mac

locate it using Finder and you should see it loaded with a screen similar to this for Visual Studio Code.

Once Visual Studio Code has opened from the Menu choose File then Open Folder... then select the

Folder for your Application e.g. C:\Workshop\Blazorfy. Then to open the Folder choose Select Folder then

one it has been opened Select the Yes, I trust the authors option in the Do you trust the authors of the

files in this folder? if this is displayed which will open the Workspace.

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

8

Extension

Then in Visual Studio Code select the Extensions option from the Sidebar then under Recommended

and then Install the Extension for C# from Microsoft:

Then once the Extension has been installed then you can select the Explorer in Visual Studio Code

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

9

Settings

While still in Visual Studio Code from the Explorer, which should be the top option from the Sidebar in

Visual Studio Code for Blazorfy open Properties by selecting the > next to it in Explorer and select

launchSettings.json as follows:

Once launchSettings.json has been selected look for applicationUrl in launchSettings.json there may be

more than one, and you will see something like http://localhost:5107 where the digits may be different. Find

anything that starts with http in applicationUrl and change the number to 1234 e.g. http://localhost:1234

Find any entry that starts with https within applicationUrl and change the number to 4321 e.g.

https://localhost:4321 as follows:

These changes to launchSettings.json will ensure when you start the Application that the address it

launches is either of the ones for http and https as this has been set up in the Dashboard to be used as

the Redirect URI in Spotify for Developers.

1234

4321

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

10

Imports

While still in Visual Studio Code from the Explorer for Blazorfy select _Imports.razor then below @using

Blazorfy.Shared type in the following:

This will allow the Package of Spotify.NetStandard to be used correctly later in the Workshop.

You can then go to the Menu in Visual Studio Code and select File and then Save All.

Once done, while still in Visual Studio Code, select Terminal and then New Terminal and then once the

Terminal has appeared type in the following command and then press Enter.

Once done this will Build and Start the Application and display it in your Browser with http://localhost:1234

or https://localhost:4321 in the Address Bar as follows:

Make sure to keep the Browser open throughout the Workshop. However if you accidently close the

Browser then you can return to Visual Studio Code and select the Terminal and then press Ctrl+C in

Windows or Command+C on Mac on the Keyboard and then in the Terminal type dotnet watch again

which should relaunch the Browser or if you close Visual Studio Code then you can just launch Visual

Studio Code again then from the Terminal type dotnet watch to launch the Browser.

@using Spotify.NetStandard.Responses

dotnet watch

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

11

Provider
The next we will start to write a class which represents something in C#, in this case will be Provider. This

will allow you to group the main functionality to use Spotify in one place and create reusable code, this

concept in software is known as Don’t Repeat Yourself or DRY.

Within Visual Studio Code from the Explorer move the Cursor over Blazorfy you will see a New File…

option, if you select this and then type in the name as follows and then press Enter:

Once you press Enter after typing in the name you should see a blank SpotifyProvider.cs or you can select it

from the Explorer in Visual Studio Code so you can see it as follows:

Should you make any mistakes with the C# in this Workshop then you will see Errors in the Terminal when

you Save any changes. So if you see any Errors double check you haven’t missed anything, the key thing to

remember is balance, you will be using a lot of curly braces that open like so { but will always have a

counterpart of } this also applies to square brackets that will have both [and] and rounded brackets of (

and) so it is a good idea to check if these are balanced, if you see any double-quotes or " then you should

always expect to see another " nearby. Where you see any semi colons or ; remember to include them,

sometimes the smallest mistake that is easy to fix makes it work once corrected!

Should you make any mistakes with the HTML or Razor these may be harder to spot and may just not look

correct in the Browser so make sure any angled brackets you see should open with < then you should

expect to see > nearby although you might see one on their own in C# but for C# that’s okay!

Errors will give you an idea of where to look for the mistake, they will often give a line number which you

can check against the value shown at the bottom of Visual Studio Code you can always Copy and Paste

any code in the Workshop but read through what you copied to see if you understand what it is doing!

SpotifyProvider.cs

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

12

Namespaces

While still in Visual Studio Code at the top of SpotifyProvider.cs from the Explorer type in the following:

C# has namespaces that group together related functionality and you can use existing functionality by

including them at the top of a class with using and in this case they are for the Packages that were

added for Blazored.LocalStorage and Spotify.NetStandard along with one that is needed from .NET.

Also please check these have been typed in correctly or you can Copy and Paste as in C# casing matters,

for example spotify.netstandard.client is wrong but Spotify.NetStandard.Client is correct.

There is also a namespace of Blazorfy which will help group together the objects for the Workshop and

finally there is a Comment which is anything with // in front of it below such as // Provider Class

below which the class will be defined in the next part of the Workshop.

If you need to format any Code you have Copy and Pasted in Visual Studio Code you can do so with

Shift+Alt+F on Windows or Shift+Option+F on Mac or right-click in any file and select Format

Document.

using Blazored.LocalStorage;
using Microsoft.AspNetCore.Components;
using Spotify.NetStandard.Client;
using Spotify.NetStandard.Client.Authentication;
using Spotify.NetStandard.Client.Interfaces;
using Spotify.NetStandard.Requests;
using Spotify.NetStandard.Responses;

namespace Blazorfy;

// Provider Class

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

13

Class

While in Visual Studio Code for SpotifyProvider.cs below the Comment of // Provider Class type in the

following which will define the structure of class for the Provider with Comments to help you put things

in the right place later in the Workshop:

This class will be populated with the functionality for the Provider and will be used throughout the

Workshop and can use the Comments so you know where you need to put things in the class.

You will be guided through each part step-by-step but the next part will be to add class so it can be used

later in the next part of the Workshop.

public class SpotifyProvider
{
 // Constants

 // Members

 // Private Methods

 // Constructor

 // Property

 // Login Method

 // Logout Method

 // Is Logged In Method

 // Handle Code Method

 // User Method

 // List Method

 // Search Method

}

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

14

Program

In Visual Studio Code you will also see a Program.cs file in the Explorer that when selected should be

similar to the following:

Within Program.cs add using for Blazored.LocalStorage below using Blazorfy; by typing in the following:

Then while still in Program.cs and above the await builder.Build().RunAsync(); type in the following:

You can then go to the Menu in Visual Studio Code and select File and then Save All, you may see in the

Terminal a message saying Do you want to restart your app - Yes (y) / No (n) / Always (a) / Never (v)?

you can select the Terminal then type y for Yes or a for Always to keep what you have done so far.

This will add what is needed by Blazored.LocalStorage and will also add the class of SpotifyProvider to be

available to the Dependency Injection system used in Blazor. Dependency Injection allows specific

functionality to be provided to an application to anywhere that needs it. In C# an Instance of a class is

needed in order for it to be used but by adding the class this way we can get Dependency Injection to

do it for us, if you want to know more about it this concept then you can read up on it after you have

completed the Workshop.

At this point you should have modified the files of launchSettings.json and Program.cs along with creating a

file called SpotifyProvider.cs you can go over the previous steps now to double-check you’ve done

everything correctly then proceed to implementing Authentication in the next section of the Workshop.

using Blazored.LocalStorage;

builder.Services.AddBlazoredLocalStorage();
builder.Services.AddScoped<SpotifyProvider>();

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

15

Authentication

Account
In this part of the Workshop you will learn how to Login to Spotify and also Logout. You can Create your

own Account on Spotify or use an existing Account by launching another Browser and go to the Spotify

for Developers website at developer.spotify.com.

Once on the website for Spotify for Developers selection option for Dashboard as follows:

The Dashboard is where you can Create and Manage integrations that use Spotify.

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/
https://developer.spotify.com/

16

If you have an existing Account for Spotify select Log In and then type in your Email address or

username and Password on the following screen and then select Log In:

If don’t have an existing Account for Spotify then select Sign-up for a free Spotify account here and

then select Sign up for Spotify and then fill in the details on the following page:

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

17

Once the Account has been created or if have logged into an existing Account for Spotify then you should

get the following option to Accept the Terms and Conditions, just read through this then select the I

accept the Spotify Developer Terms of Service and then select Accept the Terms as follows:

Once you have selected Accept the Terms then you will be taken to the Dashboard as follows:

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

18

Once in the Dashboard you can then select Create an App and then enter the App Name as Blazorfy and

the App Description as Blazorfy and then after reading the Developer Terms of Service and Branding

Guidelines select the option for I understand and agree with Spotify’s Developer Terms of Service and

Branding Guidelines then select the Create option.

Once the App has been created you will see the following Overview where you will need to Copy and

Paste the Client ID to somewhere so it can used later in the Workshop as follows:

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

19

Then select the Edit Settings from the Overview for the App and then within Edit Settings in the section

for Redirect URIs and in the box with https://example.com/callback type in https://localhost:4321/ and

select Add and then in the box with https://example.com/callback type in http://localhost:1234/ and then

select Add from the following screen:

Then from the Overview for the App select Users and Access as follows:

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

20

Then from page for Users and Access select the option for Add New User and then type in the Name and

Spotify Account (email address) for your Account on Spotify and then select Add as follows:

Once your Account shows up in the Users and Access and you have the Client Id then you can proceed

with the rest of the Workshop.

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

21

Constants

Back in Visual Studio Code from the Explorer select SpotifyProvider.cs which should have the following

contents from the Start of the Workshop:

Then in Visual Studio Code within SpotifyProvider.cs you will define Constants with const such as the

client_id as a string for text and how many and the maximum number of items that will be retrieved

later as an int for numbers. These will only be used inside the class so are declared with private.

Below the Comment of // Constants on type the following, replacing clientid with your Client Id

using Blazored.LocalStorage;
using Microsoft.AspNetCore.Components;
using Spotify.NetStandard.Client;
using Spotify.NetStandard.Client.Authentication;
using Spotify.NetStandard.Client.Interfaces;
using Spotify.NetStandard.Requests;
using Spotify.NetStandard.Responses;

namespace Blazorfy;

// Provider Class
public class SpotifyProvider
{
 // Constants

 // Members

 // Private Methods

 // Constructor

 // Property

 // Login Method

 // Logout Method

 // Is Logged In Method

 // Handle Code Method

 // User Method

 // List Method

 // Search Method

}

private const string client_id = "clientid";
private const int total = 50;
private const int max = 100;

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

22

Members

While still in SpotifyProvider.cs in Visual Studio Code you will define some Members by typing below the

Comment of // Members the following:

Members represent values within the class and these are used within the class so are marked private

with the first four being set in the Constructor later so can use readonly to not set them again there.

NavigationManager is needed to both get the current address or URI of the page and to redirect to a

particular page or URI when needed.

ILocalStorageService is from the Package of Blazored.LocalStorage and is an Interface which allows

functionality to be exposed from a class but be abstracted so the functionality could change but as long

as that stays the same anything using the Interface will still work, with this functionality being the ability to

load or save information needed for the Workshop in the Browser.

ISpotifyApi is also an Interface and is from the Package of Spotify.NetStandard which will be used to

perform the functionality needed from Spotify which will also use the Uri which will be passed to Spotify

and an AccessToken is defined which will be returned from Spotify when have successfully logged in.

Methods

While still in SpotifyProvider.cs in Visual Studio Code you will define some Methods by typing below the

Comment of // Private Methods the following:

These Methods will only be used within the class itself so again are declared with private. The first one

will help get the current address of the page of the Browser and uses the NavigationManager that was

declared previously. The second Method will use the ILocalStorageService to store the AccessToken

from Spotify. These Methods use the Arrow Syntax with the => for an Expression Body which is useful

when they only have one line to save space.

private readonly NavigationManager _navigation;
private readonly ILocalStorageService _storage;
private readonly ISpotifyApi _api;
private readonly Uri _redirectUri;
private AccessToken? _token;

private Uri GetCurrentUri() =>
 _navigation.ToAbsoluteUri(_navigation.Uri);

private async Task SetTokenAsync(AccessToken? token) =>
 await _storage.SetItemAsync(nameof(_token), token);

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

23

Constructor

While still in SpotifyProvider.cs in Visual Studio Code you will define the Constructor by typing below the

Comment of // Constructor the following:

Constructor sets up a class as well as allowing any other class or interface to be provided using

Dependency Injection which in this case includes HttpClient which will provide the ability to

communicate that is used in the Method of SpotifyClientFactory.CreateSpotifyClient along with

the client_id. Both the NavigationManager and ILocalStorageService are also provided and

the redirection Uri is also set by using the Method of GetCurrentUri.

Property

While still in SpotifyProvider.cs in Visual Studio Code you will define a Property by typing below the

Comment of // Property the following:

A Property is the best way to expose values outside of a class in C# which is also done by using public

so that this value is available to anywhere else that uses this class. This Property will be used to indicate if

the Account has been logged or not with a bool which is a true or false value by checking the

AccessToken which also had a question mark or ? which means it can have null as the value which is what

is being checked by using != which means not equal to, so when the value is null the Property will be

false and if the value is not null the Property will be true.

You can then go to the Menu in Visual Studio Code and select File and then Save All you may see in the

Terminal a message saying Do you want to restart your app - Yes (y) / No (n) / Always (a) / Never (v)?

you can select the Terminal then type y for Yes or a for Always to keep what you have done so far.

public SpotifyProvider(
 HttpClient client,
 NavigationManager navigation,
 ILocalStorageService storage)
{
 _storage = storage;
 _navigation = navigation;
 _redirectUri = new Uri(GetCurrentUri().GetLeftPart(UriPartial.Path));
 _api = SpotifyClientFactory.CreateSpotifyClient(client, client_id).Api;
}

public bool IsLoggedIn =>
 _token != null;

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

24

Login

Next within SpotifyProvider.cs in Visual Studio Code you will define a Method by typing below the

Comment of // Login Method the following:

There’s a few things going on in this Method the first thing to notice is it has public which allows it to be

used outside the class it also has async and Task as this Method performs some functionality

asynchronously which means something will happen then the result of this action will be waited for with

await and then the application can continue.

The first thing the Method does is get the Uri needed to Authenticate with Spotify and the Uri to

redirect back to once this is done is provided along with a state using nameof(SpotifyProvider) and a

Scope which controls what access to Account specific functionality is needed but in this case there’s

nothing of that nature required so None is used. Another value is also output using the out which is a Code

Verifier which is needed to complete the Authentication process.

The next thing the Method does is to store the Code Verifier in the Storage of the Browser and it is this

Method that is asynchronous then if there was a Uri returned from the first part of the Method then finally

the NavigationManager is used to redirect to it on Spotify.

Logout

Then within SpotifyProvider.cs in Visual Studio Code you will define another Method by typing below the

Comment of // Logout Method the following:

This will be used to log out of an Account and it does this by setting the AccessToken to null and then

storing that using the Method of SetTokenAsync then finally it will use NavigationManager to redirect to

the Uri for redirection and will force the page to refresh when doing so.

public async Task LoginAsync()
{
 var responseUri = _api.GetAuthorisationCodeAuthUri(
 _redirectUri,
 nameof(SpotifyProvider),
 Scope.None,
 out string codeVerifier);
 await _storage.SetItemAsync(nameof(codeVerifier), codeVerifier);
 if (responseUri != null)
 _navigation.NavigateTo(responseUri.ToString());
}

public async Task LogoutAsync()
{
 await SetTokenAsync(_token = null);
 _navigation.NavigateTo(_redirectUri.ToString(), true);
}

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

25

Logged In

Then within SpotifyProvider.cs in Visual Studio Code you will define the next Method by typing below the

Comment of // Is Logged In Method the following:

This Method checks and does a few things so let’s break it down, overall it will return a value that is either

true to indicate the Account is logged in or false if it is not.

The first thing it does is use the ILocalStorageService to set the AccessToken you’ll also notice the use

of the ??= which is known as the null-coalescing assignment Operator, but in plain English it means it will

only perform the action to get the AccessToken if it has not already been set to something, that is it will

still be null.

The AccessToken is then checked to see if it is not null by using the != or not equal to Operator and if

this is false the next part will be skipped and the return from the Method will be false.

If the AccessToken is not null was true then next thing is to check if the AccessToken has expired by

comparing the Expiration against the current date and time in UTC and if expired we logout using

LogoutAsync or if it has not expired we will to use a Method in the Client for ISpotifyApi to set the

AccessToken.

Then we can just return the Property of IsLoggedIn to indicate the Account is logged in.

public async Task<bool> IsLoggedInAsync()
{
 _token ??= await _storage.GetItemAsync<AccessToken>(nameof(_token));
 if (_token != null)
 {
 if (_token.Expiration < DateTime.UtcNow)
 {
 await LogoutAsync();
 }
 else
 {
 _api.Client.SetToken(_token);
 }
 return IsLoggedIn;
 }
 return false;
}

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

26

Handle Code

Next within SpotifyProvider.cs in Visual Studio Code you will define the next Method by typing below the

Comment of // Handle Code Method the following:

This Method will be used as part of the process of logging into Account when the process is competed in

the Browser for Spotify it will redirect back to the redirection Uri that was specified along with returning a

Code which will be handled with this Method.

The first thing is that the value passed in is checked to see if it is not null with the != or not equal to

Operator and if it does have a value then it can then get the Code Verifier from the Storage in the

Browser then this is used with the Method of GetAuthorisationCodeAuthTokenAsync in ISpotifyApi.

The response Uri is needed which will be used to get the Code that was passed along from Spotify and

the same State is used as before and the Code Verifier is also provided.

The next thing is the Method for SetTokenAsync is called to store the AccessToken and then the

NavigationManager will be used to reload the page to complete the logging in process, should no Code

be provided then the result of the Method of IsLoggedInAsync will be used instead.

User

Finally within SpotifyProvider.cs in Visual Studio Code you will define the Method to get the User for the

Account by typing below the Comment of // User Method the following:

This Method uses the Arrow Syntax with the => for an Expression Body which is useful when a Method only

has one line to save space and will get the User for the Account which will be used in a Component which

will be created in the next part of the Workshop.

public async Task<bool> HandleCodeAsync(string? code)
{
 if (code != null)
 {
 string codeVerifier =
 await _storage.GetItemAsync<string>(nameof(codeVerifier));
 _token = await _api.GetAuthorisationCodeAuthTokenAsync(
 GetCurrentUri(),
 _redirectUri,
 nameof(SpotifyProvider),
 codeVerifier);
 await SetTokenAsync(_token);
 _navigation.NavigateTo(_redirectUri.ToString());
 }
 return await IsLoggedInAsync();
}

public async Task<PrivateUser> GetUserAsync() =>
 await _api.GetUserProfileAsync();

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

27

Component

Within Visual Studio Code from the Explorer and move the Cursor over the Blazorfy you will see a New

Folder… option next to the New File… option if you select New Folder… and then type in the name as

follows then press Enter:

With the Folder for Components selected you should then select the New File… option and type in the

name as follows then press Enter:

This will form the basis of a Razor Component which is also known as a Blazor Component in Blazor or

just Component in the Workshop and for now you should have a blank Component as follows:

Components allow you to reuse or define either some functionality or some Razor and HTML to create a

piece or Component of an application that you can see in Blazor.

Components

LoginItem.razor

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

28

Within LoginItem.razor in Visual Studio Code you can define the Component by typing in the following:

The first part of the Component is the namespace for the application which is Blazorfy then the next part

will provide the Instance of the SpotifyProvider using Dependency Injection with inject.

There’s a Property for Value which can be either true or false as it is a bool and will be used to indicate

to the Component that the Account is logged in or not.

If the Account is logged in, which will be provided to the Component, then the Property for Value will be

true the with the DisplayName of the currently logged in Account and a button to Logout will be

displayed which will call the Method of LoginAsync from the class. Should the Property for Value be

false then the option to Login will be displayed which will call the Method of LogoutAsync.

There’s also an additional Property for a PrivateUser which is for the user of the Account from Spotify

then there is a special Method where the implementation of which has been overridden to provide our own

denoted with override in this case it is for OnParametersSetAsync which is called when the Properties

for the Component are set by Blazor and within this we get the details for the user of the Account.

You might be wondering why Value is used here rather than checking if the Account is logged in directly,

well we can take advantage of the fact when a value is passed into a Component and that value changes it

will cause the Component to be updated rather than having to write that functionality ourselves as Blazor

will automatically output a Component again should the value passed into it change.

@namespace Blazorfy
@inject SpotifyProvider _provider;
@if (Value)
{
 <button class="btn btn-danger" @onclick="_provider.LogoutAsync">Logout</button>
 @Item?.DisplayName
}
else
{
 <button class="btn btn-success" @onclick="_provider.LoginAsync">Login</button>
}

@code
{
 [Parameter]
 public bool Value { get; set; }

 public PrivateUser? Item { get; set; }

 protected override async Task OnParametersSetAsync()
 {
 if (Value)
 {
 Item = await _provider.GetUserAsync();
 }
 }
}

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

29

Index

Next within Visual Studio Code from the Explorer for Blazorfy open Pages by selecting the > next to it

and select index.razor, where you will see what is currently being displayed in the Browser as follows:

You will need to remove everything except the @page "/" at the top of the file so it appears as follows:

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

30

Within Index.razor in Visual Studio Code you can define the new Page by typing in below @page "/" the

following which will also include some Comments to help you place some items later in the Workshop:

This Page now includes the same line to provide the Instance of the SpotifyProvider using Dependency

Injection with inject as the Component. Then there is the Component with the Value being provided

with the Property for IsLoggedIn from the class. This is then followed by the same Property being used

in an if which will be used later in the Workshop to display some items.

There is also Code for the Page which includes a Property for the Code which will be provided to this page

by Spotify after completing the login process this is set to be a Parameter with an Attribute which is

within square brackets of [and] so that Blazor expects this to be set along with another Attribute to tell

Blazor to get this value from the Query String which is part of the Uri returned from Spotify.

Then there is a special Method where the implementation of which has been overridden to provide our

own denoted with override in this case it is for OnParametersSetAsync which is called when the

Properties for the Component are set by Blazor and within this we will call the Method for

HandleCodeAsync providing the Code that was obtained that will complete the logging process within the

application.

You can then go to the Menu in Visual Studio Code and select File and then Save All you may see in the

Terminal a message saying Do you want to restart your app - Yes (y) / No (n) / Always (a) / Never (v)?

you can select the Terminal then type y for Yes or a for Always to keep what you have done so far.

@inject SpotifyProvider _provider;
<LoginItem Value="@_provider.IsLoggedIn" />
@if (_provider.IsLoggedIn)
{
 // Items Output

}
@code
{
 [Parameter]
 [SupplyParameterFromQuery]
 public string? Code { get; set; } = null;

 // Items Property

 protected override async Task OnParametersSetAsync()
 {
 if (await _provider.HandleCodeAsync(Code))
 {
 // Items List

 }
 }
}

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

31

If you return to the Browser you will see an option to Login as shown below:

If you select the Login option you will be presented with something like the following where you should

type in the Email Address for your Account and the Password and then select Log In

If for any reason you don’t see this screen then go over the previous steps in the Workshop to make sure

you haven’t missed anything and also make sure you have an active Internet connection. If you do see this

screen correctly then you can type in the Email Address from the list of Accounts for your number along

with the Password and then select Log In you can leave the Remember Me option ticked so you can skip

this step next time you try to login. If you get an Error at the bottom of the Browser and you don’t see any

mistakes then you can Refresh the Browser and that might fix the problem!

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

32

Once you have selected Log In you should see something like the following Authorise page displayed:

This will mention “Blazorfy” and what access it will have to Account data from Spotify which will just be

enough to display User information, then you just need to select Agree.

Once you have selected Agree you will be redirected from Spotify back to Blazorfy and you should see

the following which will display your Username next to the Logout option.

You can then select Logout which should Refresh the page and display Login and with that you have

completed the Authentication part of the Workshop.

After the Break you will get a chance to add more Pages and some more functionality to the Provider to

display information from the Library of content from Spotify!

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

33

Library

In this part of the Workshop you will learn how to get information from the Library of content from

Spotify including Categories, Playlists, Albums and Podcasts. You’ll build Components to display the

details, add Pages for content from the Library and even create a Component that will allow you to see

the same details using the Spotify application on your iPhone or Android Phone if you have Spotify!

Categories

Here we’ll update the index page to show Categories, to do this return to Visual Studio Code for Blazorfy

and then from Explorer select SpotifyProvider.cs as follows:

You should also still have open the Browser showing the Login option, if you don’t then in Visual Studio

Code if it was still open select the Terminal and then press Ctrl+C in Windows or Command+C on Mac

on the Keyboard, or if Visual Studio Code was closed relaunch Visual Studio Code and then select the

New Terminal then in the Terminal. With the Terminal in Visual Studio Code open type the following

which should relaunch the Browser.

dotnet watch

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

34

Then in Visual Studio Code within SpotifyProvider.cs you will define part of a Method that will be used to

display the Categories, so below the Comment of // List Method type the following Method:

This Method is a bit more complicated so feel free to Copy and Paste it into Visual Studio Code instead of

typing it out. This Method uses a concept known as Generics which allows the type of a class to vary,

when we had string and int before those were types. In this case there will be a List of a class which

will be returned from this Method.

The first part of the Method uses the Generic syntax and also has a List of the items that will be returned.

Then there is a Page that will be used to return the items up to the total that was defined earlier and there

is a Variable of count to keep track of how many items have been retrieved.

This method then has a do – while which will keep looping when there are a number of items with count,

the number of total items is less than the maximum with max and there are still items.

The Spotify.NetStandard package uses a Paging object to contain anything returned from Spotify. When

we provide the type of Category it will use the Method of GetAllCategoriesAsync which will be of

Paging<Category> which is converted to Paging<TItem> but TItem will actually be Category in this case.

Then there’s some logic to add what was obtained to results and go to the next Page where the loop will

continue until any of the conditions being checked for are no longer satisfied. If you’d like to learn more

about Generics then you can search for .NET Generics online.

public async Task<List<TItem>> ListAsync<TItem>(string? id = null)
where TItem : class
{
 var results = new List<TItem>();
 var page = new Page() { Limit = total };
 int count;
 do
 {
 Paging<TItem>? items = null;
 // Categories
 if (typeof(TItem) == typeof(Category))
 {
 items = await _api.GetAllCategoriesAsync(page: page)
 as Paging<TItem>;
 }
 // Playlists

 // Albums

 if (items != null)
 {
 results.AddRange(items.Items);
 page.Offset += total;
 }
 count = items?.Count ?? 0;
 }
 while (count > 0 && results.Count < max && count == total);
 return results;
}

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

35

Then while still in Visual Studio Code from Explorer select the Folder for Components then with the

Folder for Components selected you should then select the New File… option and type in the name as

follows then press Enter:

This will form the basis of another Component and will be a blank Component as follows:

CategoryItem.razor

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

36

Within CategoryItem.razor in Visual Studio Code you can define this Component by typing in the

following:

The first part of the Component is the namespace for the application which is Blazorfy. Then there is a

link to a Page that will be created in the next part of the Workshop for Playlists which will pass through an

Id.

Then there is some HTML to define the layout of the Category Item this includes a check to see if there are

any Images with if that if true will then use the img to display the first image since Images is an Array

you use the [and] to provide an Index in this case 0 to get it and we also set the alt of the img to the

Name of the Category which is also displayed within a h5 and the Category itself will be provided to the

Property for Value.

@namespace Blazorfy

 <div class="card">
 @if (Value.Images.Count > 0)
 {
 <img class="card-img-top"
 src="@Value.Images[0].Url" alt="@Value.Name" />
 }
 <div class="card-body">
 <h5 class="card-title">
 @Value.Name
 </h5>
 </div>
 </div>

@code
{
 [Parameter]
 public Category Value { get; set; } = new();
}

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

37

Within Visual Studio Code from the Explorer for Blazorfy open Pages by selecting the > next to it and

select index.razor as follows:

Within Index.razor in Visual Studio Code below the Comment of // Items Property type the following:

This Property will represent the List of Category that will be obtained from the Provider.

You can then go to the Menu in Visual Studio Code and select File and then Save All you may see in the

Terminal a message saying Do you want to restart your app - Yes (y) / No (n) / Always (a) / Never (v)?

you can select the Terminal then type y for Yes or a for Always to keep what you have done so far.

public List<Category> Items { get; set; } = new();

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

38

While still in Index.razor in Visual Studio Code below the Comment of // Items List type the following:

This will use the Method of ListAsync that was defined earlier in the Provider with the type of Category.

Then while still in Index.razor and below the Comment of // Items Output type the following:

This will be used to output the Categories from the Property of Items and also uses the Component of

CategoryItem to display them.

Items = await _provider.ListAsync<Category>();

<h1>Categories</h1>
<div class="container">
 <div class="row row-cols-1 row-cols-md-4 p-2 g-2">
 @foreach (var item in Items)
 {
 <div class="col">
 <CategoryItem Value="@item" />
 </div>
 }
 </div>
</div>

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

39

Then in Visual Studio Code from the Explorer for Blazorfy open Shared by selecting the > next to it in

Explorer and select NavMenu.razor as follows:

With NavMenu.razor selected where it says Home change this to say the following:

Then you can then go to the Menu in Visual Studio Code and select File and then Save All you may see in

the Terminal a message saying Do you want to restart your app - Yes (y) / No (n) / Always (a) / Never

(v)? you can select the Terminal then type y for Yes or a for Always to keep what you have done so far.

Categories

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

40

If you return to the Browser you will see an option to Login and the first option should be Categories as

shown below:

Once you have selected Login you should see something like the following Authorise page displayed:

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

41

Once you have selected Agree you will be redirected from Spotify back to Blazorfy and you should see

the following which will display “Blazor Workshop” followed by your Number next to the Logout option

and then below this will be the Categories similar to as follows:

If you don’t see this list of Categories then go through the previous steps in the Workshop and check that

you’ve not missed anything, you can Copy and Paste anything you’re not sure of from this if needed.

Each of the Categories has a link to a Page which will be created in the next part of the Workshop where

you’ll get to build the Page for Playlists along with a special Component that you can use with the Spotify

mobile application for iPhone and Android.

You’ll probably notice, if this is still the case that one of the images is not correct for Party, as part of

Spotify for Developers there is a Forum where you can report issues and I’ve reported this incorrect asset

to them, should this have been resolved then all the images should appear consistently.

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

42

Playlists

We’ll add a new Page to show and Search for Playlists to do this return to Visual Studio Code for

Blazorfy and then from Explorer select SpotifyProvider.cs as follows:

You should also still have open the Browser showing the Login option, if you don’t then in Visual Studio

Code if it was still open select the Terminal and then press Ctrl+C in Windows or Command+C on Mac

on the Keyboard, or if Visual Studio Code was closed relaunch Visual Studio Code and then select the

New Terminal then in the Terminal. With the Terminal in Visual Studio Code open type the following

which should relaunch the Browser.

dotnet watch

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

43

Then in Visual Studio Code within SpotifyProvider.cs you will define part of a Method that will be used to

display the Categories, so below the Comment of // Search Method type the following Method:

This Method is a bit more complicated so feel free to Copy and Paste it into Visual Studio Code instead of

typing it out but you can still go through it to see if you can understand what is going on in the Method.

This Method also uses Generics and is very similar to Method for ListAsync. It has a few differences, this

time it sets up a SearchType which has values that can be true or false to indicate the kind of Search

and are using the type of the Generic to set this accordingly then using this with SearchForItemAsync

and then for each type are getting the values for that.

There is also the use of typeof which is used to get the type of the class that is being used with the

Method, this is useful as we can use this to define different behaviour depending on what type it is.

You’ll have noticed in the previous Method and this one for the count there are ?. and ?? being used, the

?. is known as the Elvis Operator and this will treat the value of Count as null if the value of items is and

then ?? can then be used to use 0 in place of the null.

public async Task<List<TItem>> SearchAsync<TItem>(string query)
where TItem : class
{
 var results = new List<TItem>();
 var page = new Page() { Limit = total };
 int count;
 do
 {
 Paging<TItem>? items = null;
 var searchType = new SearchType()
 {
 Playlist = typeof(TItem) == typeof(SimplifiedPlaylist),
 Album = typeof(TItem) == typeof(Album),
 Show = typeof(TItem) == typeof(SimplifiedShow)
 };
 var content = await _api.SearchForItemAsync(query, searchType, page: page);
 // Playlists
 if (typeof(TItem) == typeof(SimplifiedPlaylist))
 {
 items = content.Playlists as Paging<TItem>;
 }
 // Albums

 // Podcasts

 if (items != null)
 {
 results.AddRange(items.Items);
 page.Offset += total;
 }
 count = items?.Count ?? 0;
 }
 while (count > 0 && results.Count < max && count == total);
 return results;
}

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

44

While still within SpotifyProvider.cs in Visual Studio Code in the Method of ListAsync below the

Comment of // Playlists type the following:

This part of the Method will use GetCategoryPlaylistsAsync to get the Playlists for a Category.

Then while still in Visual Studio Code from Explorer select the Folder for Components then with the

Folder for Components selected you should then select the New File… option and type in the name as

follows then press Enter:

This will form the basis of a shared Component and will be a blank Component as follows:

if (typeof(TItem) == typeof(SimplifiedPlaylist))
{
 items = await _api.GetCategoryPlaylistsAsync(id, page: page)
 as Paging<TItem>;
}

Scannable.razor

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

45

Within Scannable.razor in Visual Studio Code you can define the Component by typing in the following:

This Component displays a special code that can be scanned using the Spotify application on iPhone or

Android in an img and will use a passed in Value which forms part of src.

We can break down how the code or “scannable” itself is generated like so, the svg part of the src is the

format of the image which can also be png or jpeg for those image formats.

The 5c2d91 part of the src is the background colour of the code and white is the foreground colour which

can also be black then there is a number, in this case it is 640 which is the width of the image.

Finally the end part is the URI for a Spotify item such as a Playlist and other things you can share from

Spotify, you can find out more about Spotify Codes at spotifycodes.com.

Then you can then go to the Menu in Visual Studio Code and select File and then Save All you may see in

the Terminal a message saying Do you want to restart your app - Yes (y) / No (n) / Always (a) / Never

(v)? you can select the Terminal then type y for Yes or a for Always to keep what you have done so far.

@namespace Blazorfy
<img class="img-fluid"
src="https://scannables.scdn.co/uri/plain/svg/5c2d91/white/640/@Value" />

@code
{
 [Parameter]
 public string Value { get; set; } = string.Empty;
}

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/
https://www.spotifycodes.com/

46

Then while still in Visual Studio Code from Explorer select the Folder for Components then with the

Folder for Components selected you should then select the New File… option and type in the name as

follows then press Enter:

This will form the basis of another Component and will be a blank Component as follows:

PlaylistItem.razor

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

47

Within PlaylistItem.razor in Visual Studio Code you can define the Component by typing in the following:

The first part of the Component is the namespace for the application which is Blazorfy. Then there is

some HTML to define the layout of a Playlist Item this includes a check to see if there are any Images with

if that if true will then use the img to display the first image since Images is an Array you use the [and]

to provide an Index in this case 0 to get it and we also set the alt of the img to the Name of the Playlist

which is also displayed within a h5 and the Playlist itself will be provided to the Property for Value. You’ll

also see the inclusion of the Component for the Scannable which is provided with the Uri of the Playlist.

Then you can then go to the Menu in Visual Studio Code and select File and then Save All you may see in

the Terminal a message saying Do you want to restart your app - Yes (y) / No (n) / Always (a) / Never

(v)? you can select the Terminal then type y for Yes or a for Always to keep what you have done so far.

@namespace Blazorfy
<div class="card">
 @if (Value.Images.Count > 0)
 {

 }
 <Scannable Value="@Value.Uri" />
 <div class="card-body">
 <h5 class="card-title">
 @Value.Name
 </h5>
 </div>
</div>

@code
{
 [Parameter]
 public SimplifiedPlaylist Value { get; set; } = new();
}

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

48

Then in Visual Studio Code from Explorer select the Folder for Pages then with the Folder for Pages

selected you should then select the New File… option and type in the name as follows then press Enter:

This will form the basis of a Page and will be a blank Page as follows:

PlaylistsPage.razor

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

49

Within PlaylistsPage.razor in Visual Studio Code you can define the Page by typing in the following:

This Page includes two page directives which create the Routes needed to navigate to this Page this

includes the one from the Category Item which will provide the Id and another which will be used from the

Menu later.

There is also an inject to provide the Instance of the SpotifyProvider using Dependency Injection.

Then there is the Component of LoginItem with the Value being provided with the Property for

IsLoggedIn from the class.

There is also the Property for Items to be displayed in the Page along with a Property for the Search that

will be provided, which will be from a query to the page from a Form which is denoted with the Attribute

of SupplyParameterFromQuery or one for Id should this be provided as a Parameter.

@page "/playlists/"
@page "/playlists/{id}"
@inject SpotifyProvider _provider;
<LoginItem Value="@_provider.IsLoggedIn" />
@if (_provider.IsLoggedIn)
{
 // Items Output

}

@code
{
 public List<SimplifiedPlaylist> Items { get; set; } = new();

 [Parameter]
 [SupplyParameterFromQuery]
 public string? Search { get; set; }

 [Parameter]
 public string? Id { get; set; }

 // Items Method

}

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

50

While still within PlaylistsPage.razor in Visual Studio Code and below the Comment for // Items Method

type the following Method:

This is a special Method where the implementation of which has been overridden to provide our own

denoted with override in this case it is for OnParametersSetAsync.

This will use Clear on Items to reset it and then will check if the user is logged in, then it checks to see if

Search has a value other than null, if it does then it will use the Method of SearchAsync and provide the

value to this, otherwise it will then check if the Id has a value, which it will should this be from the link from

the Category Item which provides this to the Page and will use the Method of ListAsync instead.

protected async override Task OnParametersSetAsync()
{
 Items.Clear();
 if (await _provider.IsLoggedInAsync())
 {
 if (Search != null)
 {
 Items = await _provider.SearchAsync<SimplifiedPlaylist>(Search);
 }
 else
 {
 if (Id != null)
 {
 Items = await _provider.ListAsync<SimplifiedPlaylist>(Id);
 }
 }
 }
}

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

51

Finally while still within PlaylistsPage.razor in Visual Studio Code and below the Comment for // Items

Output type the following:

This defines how the Page will look, the first part will check if the Id is not present, that is not be null or an

empty string then if this is the case then it will display a title along with form to perform a Search this

has an input which is where the Playlist being looked for will be typed in and then there is a button to

perform the Search.

Should the Id be present then it will display different title. Below these the Component for the Playlist

Item will be used to display the Playlists.

Then you can then go to the Menu in Visual Studio Code and select File and then Save All you may see in

the Terminal a message saying Do you want to restart your app - Yes (y) / No (n) / Always (a) / Never

(v)? you can select the Terminal then type y for Yes or a for Always to keep what you have done so far.

@if (string.IsNullOrEmpty(Id))
{
 <h1>Search @Search</h1>
 <form @onsubmit="OnParametersSetAsync">
 <input type="text" @bind="Search" @bind:event="oninput" />
 <button class="btn btn-primary">Search</button>
 </form>
}
else
{
 <h1>Playlists</h1>
}
<div class="container">
 <div class="row row-cols-1 row-cols-md-4 p-2 g-2">
 @foreach (var item in Items)
 {
 <div class="col">
 <PlaylistItem Value="@item" />
 </div>
 }
 </div>
</div>

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

52

Then in Visual Studio Code from the Explorer for Blazorfy open Shared by selecting the > next to it in

Explorer and select NavMenu.razor as follows:

With NavMenu.razor selected there will be a section for Counter as follows:

Change where it says counter in href to be as follows:

Then you will need to change where it says oi-plus in the span to be as follows:

Next you will need to change where it says Counter to be as follows:

Then you can then go to the Menu in Visual Studio Code and select File and then Save All you may see in

the Terminal a message saying Do you want to restart your app - Yes (y) / No (n) / Always (a) / Never

(v)? you can select the Terminal then type y for Yes or a for Always to keep what you have done so far.

<div class="nav-item px-3">
 <NavLink class="nav-link" href="counter">
 Counter
 </NavLink>
</div>

playlists

oi-list

Playlists

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

53

If you return to the Browser you will see the Categories along with a link to Playlists as shown below:

You can then select one of the Categories and you should see a list of Playlists similar to as follows:

You can also select the Playlists option from the Menu and then type in your favourite Artist or anything

else and then select Search to find related Playlists. You’ll also notice underneath each Playlist is a Spotify

Code, if you have Spotify on your iPhone or Android device you can use the option to scan these using the

app and can then checkout the Playlist for yourself.

If you don’t see anything then check that you’ve completed each part correctly and double-check that what

you have is the same, if everything is working then you can proceed to the next part of the Workshop.

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

54

Albums

We’ll add a new Page to show and Search for Albums to do this return to Visual Studio Code for Blazorfy

and then from Explorer select SpotifyProvider.cs as follows:

You should also still have open the Browser showing the Login option, if you don’t then in Visual Studio

Code if it was still open select the Terminal and then press Ctrl+C in Windows or Command+C on Mac

on the Keyboard, or if Visual Studio Code was closed relaunch Visual Studio Code and then select the

New Terminal then in the Terminal. With the Terminal in Visual Studio Code open type the following

which should relaunch the Browser.

dotnet watch

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

55

Then in Visual Studio Code within SpotifyProvider.cs you will define part of the Method that will be used to

get New Releases of Albums. In the Method of ListAsync and below the Comment of // Albums type

the following:

This part of the Method will be used to get the New Releases from Spotify when the type is Album.

While still within SpotifyProvider.cs you will define part of the Method that will be used to Search for

Albums. In the Method of SearchAsync and below the Comment of // Albums type the following:

This will get the Albums that are returned when the SearchType is Album, which is determined in

SearchAsync by checking if the type that is used is an Album and setting the value for this accordingly.

Then you can then go to the Menu in Visual Studio Code and select File and then Save All you may see in

the Terminal a message saying Do you want to restart your app - Yes (y) / No (n) / Always (a) / Never

(v)? you can select the Terminal then type y for Yes or a for Always to keep what you have done so far.

if (typeof(TItem) == typeof(Album))
{
 items = await _api.GetAllNewReleasesAsync(page: page)
 as Paging<TItem>;
}

if (typeof(TItem) == typeof(Album))
{
 items = content.Albums as Paging<TItem>;
}

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

56

Then while still in Visual Studio Code from Explorer select the Folder for Components then with the

Folder for Components selected you should then select the New File… option and type in the name as

follows then press Enter:

This will form the basis of another Component and will be a blank Component as follows:

AlbumItem.razor

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

57

Within AlbumItem.razor in Visual Studio Code you can define the Component by typing in the following:

The first part of the Component is the namespace for the application which is Blazorfy. Then there is

some HTML to define the layout of an Album Item this includes a check to see if there are any Images

with if that if true will then use the img to display the first image since Images is an Array you use the [

and] to provide an Index in this case 0 to get it and we also set the alt of the img to the Name of the

Album which is also displayed within a h5 and the Album itself will be provided to the Property for Value.

You’ll also see the inclusion of the Component for the Scannable which is provided with the Uri of the

Album.

This Component is identical to the one for Playlist but you could Optionally include different information

such as the Artist for the Album as SimplifiedAlbum has a Property for a List of Artists that could be

used for this purpose that you could add to this Component.

Then you can then go to the Menu in Visual Studio Code and select File and then Save All you may see in

the Terminal a message saying Do you want to restart your app - Yes (y) / No (n) / Always (a) / Never

(v)? you can select the Terminal then type y for Yes or a for Always to keep what you have done so far.

@namespace Blazorfy
<div class="card">
 @if (Value.Images.Count > 0)
 {

 }
 <Scannable Value="@Value.Uri" />
 <div class="card-body">
 <h5 class="card-title">
 @Value.Name
 </h5>
 </div>
</div>

@code
{
 [Parameter]
 public SimplifiedAlbum Value { get; set; } = new();
}

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

58

Then in Visual Studio Code from Explorer select the Folder for Pages then with the Folder for Pages

selected you should then select the New File… option and type in the name as follows then press Enter:

This will form the basis of a Page and will be a blank Page as follows:

AlbumsPage.razor

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

59

Within AlbumsPage.razor in Visual Studio Code you can define the Page by typing in the following:

This Page includes a page directive which create a Route needed to navigate to this Page which will be

used from the Menu later.

There is also an inject to provide the Instance of the SpotifyProvider using Dependency Injection

and then there is the Component of LoginItem with the Value being provided with the Property for

IsLoggedIn from the class.

There is also the Property for Items to be displayed in the Page along with a Property for the Search that

will be provided, which will be from a query to the page from a Form which is denoted with the Attribute

of SupplyParameterFromQuery.

@page "/albums"
@inject SpotifyProvider _provider;
<LoginItem Value="@_provider.IsLoggedIn" />
@if (_provider.IsLoggedIn)
{
 // Items Output

}

@code
{
 public List<Album> Items { get; set; } = new();

 [Parameter]
 [SupplyParameterFromQuery]
 public string? Search { get; set; }

 // Items Method

}

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

60

While still within PlaylistsPage.razor in Visual Studio Code and below the Comment for // Items Method

type the following Method:

This is a special Method where the implementation of which has been overridden to provide our own

denoted with override in this case it is for OnParametersSetAsync.

This will use Clear on Items to reset it and then will check if the user is logged in, then it checks to see if

Search has a value other than null, if it does then it will use the Method of SearchAsync and provide the

value to this with the type of Album otherwise it will use the Method of ListAsync with the type of

Album.

protected override async Task OnParametersSetAsync()
{
 Items.Clear();
 if (await _provider.IsLoggedInAsync())
 {
 if (Search != null)
 {
 Items = await _provider.SearchAsync<Album>(Search);
 }
 else
 {
 Items = await _provider.ListAsync<Album>();
 }
 }
}

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

61

Finally while still within AlbumsPage.razor in Visual Studio Code and below the Comment for // Items

Output type the following:

This defines how the Page will look, the first part will check if the Search is not be null or an empty

string then if this is the case then it will display a title as New Releases or as Search.

Then there is a form to perform a Search this has an input which is where the Album being looked for will

be typed in and then there is a button to perform the Search and below this the Component for the

Album Item will be used to display the Albums.

Then you can then go to the Menu in Visual Studio Code and select File and then Save All you may see in

the Terminal a message saying Do you want to restart your app - Yes (y) / No (n) / Always (a) / Never

(v)? you can select the Terminal then type y for Yes or a for Always to keep what you have done so far.

@if (string.IsNullOrWhiteSpace(Search))
{
 <h1>New Releases</h1>
}
else
{
 <h1>Search @Search</h1>
}
<form @onsubmit="OnParametersSetAsync">
 <input type="text" @bind="Search" @bind:event="oninput" />
 <button class="btn btn-primary">Search</button>
</form>
<div class="container">
 <div class="row row-cols-1 row-cols-md-4 p-2 g-2">
 @foreach (var item in Items)
 {
 <div class="col">
 <AlbumItem Value="@item" />
 </div>
 }
 </div>
</div>

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

62

Then in Visual Studio Code from the Explorer for Blazorfy open Shared by selecting the > next to it in

Explorer and select NavMenu.razor as follows:

With NavMenu.razor selected there will be a section for Fetch Data as follows:

Change where it says fetchdata in href to be as follows:

Then you will need to change where it says oi-list-rich in the span to be as follows:

Next you will need to change where it says Fetch Data to be as follows:

Then you can then go to the Menu in Visual Studio Code and select File and then Save All you may see in

the Terminal a message saying Do you want to restart your app - Yes (y) / No (n) / Always (a) / Never

(v)? you can select the Terminal then type y for Yes or a for Always to keep what you have done so far.

<div class="nav-item px-3">
 <NavLink class="nav-link" href="fetchdata">
 Fetch data
 </NavLink>
</div>

albums

oi-musical-note

Albums

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

63

If you return to the Browser you should be where you left off but there will now be an Albums option in

the Menu as shown below:

You can then select Albums and you should see a list of New Releases of Albums similar to as follows:

You can also type in your favourite Album and then select Search to find it. You’ll also notice underneath

each Album is a Spotify Code, if you have Spotify on your iPhone or Android device you can use the

option to scan these using the app and can then checkout the Album for yourself.

If you don’t see anything then check that you’ve completed each part correctly and double-check that what

you have is the same, if everything is working then you can proceed to the next part of the Workshop.

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

64

Podcasts

We’ll add a new Page to Search for Podcasts, to do this return to Visual Studio Code for Blazorfy and

then from Explorer select SpotifyProvider.cs as follows:

You should also still have open the Browser showing the Login option, if you don’t then in Visual Studio

Code if it was still open select the Terminal and then press Ctrl+C in Windows or Command+C on Mac

on the Keyboard, or if Visual Studio Code was closed relaunch Visual Studio Code and then select the

New Terminal then in the Terminal. With the Terminal in Visual Studio Code open type the following

which should relaunch the Browser.

Then in Visual Studio Code within SpotifyProvider.cs you will define part of the Method that will be used to

get New Releases of Albums. In the Method of SearchAync and below the Comment of // Podcasts

type the following:

This part of the Method will be used to Search for Podcasts from Spotify when the type is

SimplifiedShow.

Then you can then go to the Menu in Visual Studio Code and select File and then Save All you may see in

the Terminal a message saying Do you want to restart your app - Yes (y) / No (n) / Always (a) / Never

(v)? you can select the Terminal then type y for Yes or a for Always to keep what you have done so far.

dotnet watch

if (typeof(TItem) == typeof(SimplifiedShow))
{
 items = content.Shows as Paging<TItem>;
}

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

65

Then while still in Visual Studio Code from Explorer select the Folder for Components then with the

Folder for Components selected you should then select the New File… option and type in the name as

follows then press Enter:

This will form the basis of another Component and will be a blank Component as follows:

PodcastItem.razor

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

66

Within PodcastItem.razor in Visual Studio Code you can define the Component by typing in the following:

The first part of the Component is the namespace for the application which is Blazorfy. Then there is

some HTML to define the layout of the Podcast Item this includes a check to see if there are any Images

with if that if true will then use the img to display the first image since Images is an Array you use the [

and] to provide an Index in this case 0 to get it and we also set the alt of the img to the Name of the

Podcast which is also displayed within a h5 and the Podcast itself will be provided to the Property for

Value.

You’ll also see the inclusion of the Component for the Scannable which is provided with the Uri of the

Podcast, within Spotify for Developers a Podcast is called a Show.

Then you can then go to the Menu in Visual Studio Code and select File and then Save All you may see in

the Terminal a message saying Do you want to restart your app - Yes (y) / No (n) / Always (a) / Never

(v)? you can select the Terminal then type y for Yes or a for Always to keep what you have done so far.

@namespace Blazorfy
<div class="card">
 @if (Value.Images.Count > 0)
 {

 }
 <Scannable Value="@Value.Uri" />
 <div class="card-body">
 <h5 class="card-title">
 @Value.Name
 </h5>
 </div>
</div>

@code
{
 [Parameter]
 public SimplifiedShow Value { get; set; } = new();
}

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

67

Then in Visual Studio Code from Explorer select the Folder for Pages then with the Folder for Pages

selected you should then select the New File… option and type in the name as follows then press Enter:

This will form the basis of a Page and will be a blank Page as follows:

PodcastsPage.razor

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

68

Within PodcastsPage.razor in Visual Studio Code you can define the entire Page by typing in the following:

This Page includes a page directive which create a Route needed to navigate to this Page which will be

used from the Menu later.

There is also an inject to provide the Instance of the SpotifyProvider using Dependency Injection.

Then there is the Component of LoginItem with the Value being provided with the Property for

IsLoggedIn from the class.

There is also the Property for Items to be displayed in the Page along with a Property for the Search that

will be provided, which will be from a query to the page from a Form which is denoted with the Attribute

of SupplyParameterFromQuery.

@page "/podcasts"
@inject SpotifyProvider _provider;
<LoginItem Value="@_provider.IsLoggedIn" />
@if (_provider.IsLoggedIn)
{
 // Items Output

}

@code
{
 public List<SimplifiedShow> Items { get; set; } = new();

 [Parameter]
 [SupplyParameterFromQuery]
 public string? Search { get; set; }

 // Items Method

}

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

69

While still within PodcastsPage.razor in Visual Studio Code and below the Comment for // Items Method

type the following Method:

This is a special Method where the implementation of which has been overridden to provide our own

denoted with override in this case it is for OnParametersSetAsync and will populate the List of Items

for the type of SimplifiedShow which represents a Podcast using the Method of SearchAsync and

provide the value to this with type of SimplifiedShow.

Finally while still within PodcastsPage.razor in Visual Studio Code and below the Comment for // Items

Output type the following:

This defines how the Page will look, there is a form to perform a Search this has an input which is where

the Podcast being looked for will be typed in and then there is a button to perform the Search and below

this the Component for the Podcast Item will be used to display the Podcasts.

You can then go to the Menu in Visual Studio Code and select File and then Save All you may see in the

Terminal a message saying Do you want to restart your app - Yes (y) / No (n) / Always (a) / Never (v)?

you can select the Terminal then type y for Yes or a for Always to keep what you have done so far.

protected override async Task OnParametersSetAsync()
{
 Items.Clear();
 if (await _provider.IsLoggedInAsync())
 {
 if (Search != null)
 {
 Items = await _provider.SearchAsync<SimplifiedShow>(Search);
 }
 }
}

<h1>Search @Search</h1>
<form @onsubmit="OnParametersSetAsync">
 <input type="text" @bind="Search" @bind:event="oninput" />
 <button class="btn btn-primary">Search</button>
</form>
<div class="container">
 <div class="row row-cols-1 row-cols-md-4 p-2 g-2">
 @foreach (var item in Items)
 {
 <div class="col">
 <PodcastItem Value="@item" />
 </div>
 }
 </div>
</div>

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

70

Then in Visual Studio Code from the Explorer for Blazorfy open Shared by selecting the > next to it in

Explorer and select NavMenu.razor as follows:

Then within NavMenu.razor after the </div> of the Albums section in the Menu shown below:

You can add Podcasts section to the Menu by typing in the following:

You can then go to the Menu in Visual Studio Code and select File and then Save All you may see in the

Terminal a message saying Do you want to restart your app - Yes (y) / No (n) / Always (a) / Never (v)?

you can select the Terminal then type y for Yes or a for Always to keep what you have done so far.

<div class="nav-item px-3">
 <NavLink class="nav-link" href="albums">
 Albums
 </NavLink>
</div>

<div class="nav-item px-3">
 <NavLink class="nav-link" href="podcasts">
 Podcasts
 </NavLink>
</div>

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

71

If you return to the Browser you should be where you left off but there will now be an Podcasts option in

the Menu as shown below:

You can then select Podcast then search for your favourite and should see something similar to as follows:

Again underneath each Podcast is a Spotify Code, if you have Spotify on your iPhone or Android device

you can use the option to scan these using the app and can then subscribe to the Podcast yourself.

If you don’t see anything then check that you’ve completed each part correctly and double-check that what

you have is the same and then you can Logout and Close the Browser and Visual Studio Code.

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

72

Finish

Blazor
Blazor allows you to build interactive client web applications composed using C#, HTML and CSS that

supports both Client using Web Assembly and Server using ASP.NET created by Microsoft.

Blazor allows you to develop either for Server where events are passed using SignalR to the Client or you

can run your C# code directly on the Client in the Browser using WebAssembly and you can even re-use

code between Server and Client. You can find out more about Blazor including documentation, examples

and more at blazor.net.

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/
https://blazor.net/

73

Spotify

Spotify is a music streaming service that allows you to discover and play a variety of Music and Podcasts

from your iPhone or Android or other devices and a Web API for developers with Spotify for Developers.

Spotify for Developers allows you to deliver your own experiences powered by a Web API for Albums,

Artists, Shows and their Episodes along with Audiobooks and their Chapters. You can also Search

content, show User information, manage Playlists and get Categories or Genres. You can also control

playback with Player or see what Markets you can get Spotify.

Spotify for Developers uses a normal Spotify account and you can sign up for free and then set up Apps

in the Dashboard to create the Client Id to use the service and as Edit Settings such as Redirect URIs or

add up to 25 Spotify accounts for development, or when ready request an Extension to go public. You can

find out more about Spotify for Developers and the Web API including documentation, examples, online

console and more at developer.spotify.com.

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/
https://developer.spotify.com/

74

Summary

Blazor is a powerful platform that allows you to create experiences in your Browser like Blazorfy using

Spotify so you can see what you can do with it and leverage the power of the .NET platform in your

applications, whether you’ve never written a single line of code until today, or had never heard or used

Blazor, .NET or C# or you just wanted to try something new hopefully you’ve learned something today and

you can go back over the Workshop and look up many of the concepts, but the best way is to try

something small and grow from there, you can go from Hello World to Blazorfy in a couple of hours,

where would spending more time take you? You’ll just have to find out!

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

