€ tutorialrcom

Qworkshop

Blazortfy

Sy

Blazor x Spotity

https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/
https://twitter.com/tutorialrdotcom
https://www.tutorialr.com/
https://www.tutorialr.com/workshops/

Qtutorialr.com

Contents

Contents

SOUUP ottt bR AR AR AR ARt i s 3
AN BT ettt s bbbk R e E AR R AR AR b et 3
PLOJECT ettt A SRR AR AR R AR ARt s s 4
PACKAGES ...ttt st s8R AR AR R et 5
ViISUBI STUIO COE.....ouiiiieiiecieiie ettt bbb bbb bbbt 6

SEAIT et Rt 7
WWOTKSPACE. ...ttt s8Rt 7
EXEEINSION et 8
SETEINGS ettt s s AR R AR ARt 9
IMIPDOIES .ottt st s s eSS s eSS E AR A AR A A s et s st enen 10
PIOVIAET ...t b bbb 11
INMESPACES ...ttt ettt s s s s s s st s bbb st a e sanes s 12
ClASS ettt 13
PrOGIAM.ccee ekt 14

AUTNENTICATION ...ttt 15
ACCOUNT et bbb bbbt 15
CONSTANTS ...ttt e b 21
IVLEIMIDIETS ...ttt bbb 22
IMEEENOAS ...t 22
CONSTIUCTON ...ttt s b bbb 23
PrOPEITY ..ottt s bbbt 23
LOGIN ettt R ke A et 24
LOGOUL .ttt bbb s bbbt 24
LOGGEA TNttt bbb e 25
HANAIE COE.....u it bbb bbb b 26
USSI ettt et s s b bR bR et sttt 26
COMPONENT ...ttt s st s s et s e et b st as bbb eesetaneanenetas 27
IOEX ettt bbb bR R R 29

Qtutorialr.com 1 c® 0O

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

etutorialr.com

LIDTAIY ettt R SRR RS R RS sRRA RSt 33
CALEGOTIES .ottt ss s e s8££ 8 bbbt 33
PLAYIISTS c.vv ettt s AR AR ARt 42
ATDUMS ...ttt bbb 828488488888 54
POTCASTS ..ottt bbb 64

FINISI ettt bbb R R R £ R R e bbb 72
BlAZOT ettt eSS RS RR R bbb 72
S PP OEIY ettt R AR ARt 73
SUMIMIAIY ottt s st s e s e s s s e s et n e s s e st e s es b e s neaneansrneas 74

Qtutorialr.com 2 c® 0O

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

€ tutorialrcom

Setup
.NET

.NET includes Blazor so you will need to Download and Install the latest version of the .NET SDK, which if
you don't have it already you can Download it for Windows or Mac using a new Browser tab at dot.net

Bf Microsoft | .NET why.ner Features leam . Docs . Dowloads Community UVETV Al Micresoft

Free. Cross-platform. Open source.
Build any app
with .NET

Create beautiful apps and scalable cloud
services, faster and easier with the free, open-
source platform that's loved by developers and
trusted by organizations.

Supported on Windows, Linux, and mac0S

&= PN
€
Feedback

Fraa and anan eniirra Faet and Arace_nlatfarm Madarn and nradinintiva

Once Downloaded you can open to Install the .NET SDK by following the steps in the Installation Wizard

ﬁ Microsoft MET SDK 7.0.100 (xG4) Installer — X

Microsoft .NET SDK 7.0.100

NET SDK

The .MET 5DK is used to build, run, and test NET applications. You can choose from
multiple languages, editors, and developer tools, and take advantage of a large
ecosystem of libraries to build apps for web, mebile, desktep, gaming, and leT. We
hope you enjoy it!

If you plan to use MET 7.0 with Visual Studio, Visual Studic 2022 17.4 or newer is
required. Learn more.

By clicking Install, you agree to the following terms:

Privacy Statement

Telemetry collection and opt-cut

Licensing Information for MET

-ylnstall Close

Qtutorialr.com 3 c® 0O

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/
https://dot.net/

Qtutorialr.com

Project

If the .NET SDK has been Installed, then if using a Mac you then need to go to Finder then search for
Terminal and then select it or if using Windows you need to go to Start then search for Command
Prompt and then select it so it launches as follows:

B command Prompt X 4+~ _ o %

C:\Workshop>

Once in the Command Prompt or Terminal you will need to create a new Folder, you can use mkdir
followed by the name of the Folder e.g. Workshop and then press Enter.

mkdir Workshop

Then you will need to switch to this Folder, to do this from the Command Prompt or Terminal type in the
following command and then press Enter:

cd Workshop

Once in this Folder you can create a new Project using the .NET CLI that was Installed as part of the .NET
SDK. While still in the Command Prompt or Terminal type in the following and then press Enter:

dotnet new blazorwasm -o Blazorfy

This will create a new Project for Blazor using WebAssembly or wasm. Once the Project has been created
in the Command Prompt or Terminal you will need to change to the Folder for the Workshop by typing
in the following and then press Enter:

cd Blazorfy

Please make a note of the Folder where you have created the Project e.g. C:\Workshop\Blazor for later in
the Workshop.

etutorialr.com 4 c® 0O

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

etutorialr.com

Packages

While still in the Command Prompt or Terminal you will add some Packages that will be used in Blazorfy
to add the first Package of Blazored.LocalStorage, type the following and then press Enter:

dotnet add package Blazored.LocalStorage

This will add the Package for Blazored.LocalStorage created by Chris Sainty which provides access to local
storage for Blazor applications, this will be used to save and load values in the Browser.

Then while still in the Command Prompt or Terminal you can add the second Package of
Spotify.NetStandard type the following and then press Enter:

dotnet add package Spotify.NetStandard

This will add the Package for Spotify.NetStandard created by Peter Bull which provides access to the
Spotify Web API and will be used to obtain information from Spotify.

You can then close this Command Prompt or Terminal as it will no longer be needed in the Workshop.

Qtutorialr.com 5 c® 0O

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

etutorialr.com

Visual Studio Code

Visual Studio Code is a free Integrated Development Environment or IDE created by Microsoft and will
be used in the Workshop and will make writing the application easier. You can Download it, if you don't
have it already, for Windows or Mac from a new Browser tab code.visualstudio.com

Visual Studio Code

Code editing.
Redefined.

Download for Windows
Stable Build

3000

AL C 19 Spwes? UTFE IF Jeomt @ &

IntelliSense Run and Debug Built-in Git Extensions
Ny R V| @\

Once it has been Downloaded, you can then Install it by following the steps in the Installation Wizard

)0 Setup - Microsoft Visual Studio Code (User) — *
License Agreement
Please read the following important information before continuing.

Please read the following License Agreement. You must accept the terms of this agreement before continuing
with the installation,

This license applies to the Visual Studio Code product. Source Code for Visual
Studio Code is available at https://github.com/Microsoft/vscode under the MIT
license agreement at https.//github.com/microsoft/vscode/blob/main/LICENSE txt.
Additional license information can be found in our FAQ at

https.//code.visualstudio.com/docs/supporting/faq.

MICROSOFT SOFTWARE LICENSE TERMS
MICROSOFT VISUAL STUDIO CODE

These license terms are an agreement between you and Microsoft Corporation (or based ¥

O I accept the agreement
@)1 do not accept the agreement

Cancel

Once you've installed .NET, used dotnet new blazorwasm -o Blazorfy, added the Packages and
installed Visual Studio Code then you're ready for the Workshop.

Qtutorialr.com 6 c® 0O

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/
https://code.visualstudio.com/

etutorialr.com

Start
Workspace

Once Visual Studio Code has been Installed, or was already Installed but if it is not already running then if
using Windows you need to go to Start then search for Visual Studio Code and then select it or on Mac
locate it using Finder and you should see it loaded with a screen similar to this for Visual Studio Code.

) Get Started X

Visual Studio Code

Editing evolved
Start Walkthroughs

Get Started with VS Code

Discover the best customizations 16 make VS Code yours.

Once Visual Studio Code has opened from the Menu choose File then Open Folder... then select the
Folder for your Application e.g. C:\Workshop\Blazorfy. Then to open the Folder choose Select Folder then
one it has been opened Select the Yes, | trust the authors option in the Do you trust the authors of the
files in this folder? if this is displayed which will open the Workspace.

Yes, | trust the authors. No, | don't trust the authors
Trust folder and enable oll features Browse folder in restricted mode

Qtutorialr.com

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

Qtutorialr.com

Extension

Then in Visual Studio Code select the Extensions option from the Sidebar then under Recommended
and then Install the Extension for C# from Microsoft:

) fle Edit Selection View Go fun Jeminal Help

¥ Extension: C# X

Details Feature Contributions Changelog
IR e——r— < s Cé# for Visual Studio Code (powered by OmniSharp)
¥ Snippets

e . q 5y ghting IntelliSense. G to Definitior

2 jing s not supported.
C# Extensions Extension Resources

JosKreativ

Auto-Using for C#

Fudge

C# Namespace Autocompletion
More Infa

eppal (CF thema for Unity)

Get Started Writing C# in VS Code

Ignacia Roldan Eicheverry

C# to TypeSeript
Announcements

Aciian Wilczyrski

HIMLCR s he C# extension no longer ships with an included Mono & MSBuild Tools

Fireside2] Framework builds of Omnisharp no longer ship with Mona or the MSBuild tooling {See announcement

out of the bax for NET SDK projects, we have changed the default value of
Super Sharp (CZ extensions)

raigthor 1 need Unity
c# Colors 1p. Pleas
sqerto for more details.
€ Essentials
ST
X @0A0 & BIBlarordy

) ke Edit Selection View Run Terminal Help

@

“ BLAZORFY

Blazorfy.csproj
Program.cs

> oumme
> TMEUNE
X @040 & EIBlaory

Qtutorialr.com

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

Qtutorialr.com
Settings

While still in Visual Studio Code from the Explorer, which should be the top option from the Sidebar in
Visual Studio Code for Blazorfy open Properties by selecting the > next to it in Explorer and select
launchSettings.json as follows:

Demos o x

In32,Col35 Spaes? UTFE CRIF () SON & 0

TN
X ®0A0 & BIuory

Once launchSettings.json has been selected look for applicationUrl in launchSettings.json there may be
more than one, and you will see something like http://localhost:5107 where the digits may be different. Find
anything that starts with http in applicationUrl and change the number to 1234 e.g. http.//localhost: 1234

1234

Find any entry that starts with https within applicationUrl and change the number to 4321 e.g.
https://localhost:4321 as follows:

4321

These changes to launchSettings.json will ensure when you start the Application that the address it
launches is either of the ones for http and https as this has been set up in the Dashboard to be used as
the Redirect URI in Spotify for Developers.

Qtutorialr.com 9 c® 0O

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

etutorialr.com

Imports

While still in Visual Studio Code from the Explorer for Blazorfy select _Imports.razor then below @using
Blazorfy.Shared type in the following:

@using Spotify.NetStandard.Responses

This will allow the Package of Spotify.NetStandard to be used correctly later in the Workshop.
You can then go to the Menu in Visual Studio Code and select File and then Save All.

Once done, while still in Visual Studio Code, select Terminal and then New Terminal and then once the
Terminal has appeared type in the following command and then press Enter.

dotnet watch

Once done this will Build and Start the Application and display it in your Browser with http.//localhost: 1234
or https://localhost:4321 in the Address Bar as follows:

Hello, world

Welcome to your new app

How is Blazor working for you? Please take our brief survey and tell us what you think

Make sure to keep the Browser open throughout the Workshop. However if you accidently close the
Browser then you can return to Visual Studio Code and select the Terminal and then press Ctrl+C in
Windows or Command+C on Mac on the Keyboard and then in the Terminal type dotnet watch again
which should relaunch the Browser or if you close Visual Studio Code then you can just launch Visual
Studio Code again then from the Terminal type dotnet watch to launch the Browser.

@tutorialr.com 10 BIOI®)

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

Qtutorialr.com

Provider

The next we will start to write a class which represents something in C#, in this case will be Provider. This
will allow you to group the main functionality to use Spotify in one place and create reusable code, this
concept in software is known as Don't Repeat Yourself or DRY.

Within Visual Studio Code from the Explorer move the Cursor over Blazorfy you will see a New File...
option, if you select this and then type in the name as follows and then press Enter:

SpotifyProvider.cs

Once you press Enter after typing in the name you should see a blank SpotifyProvider.cs or you can select it
from the Explorer in Visual Studio Code so you can see it as follows:

DoMos

1
X @0A0 & BIBaory

Should you make any mistakes with the C# in this Workshop then you will see Errors in the Terminal when
you Save any changes. So if you see any Errors double check you haven't missed anything, the key thing to
remember is balance, you will be using a lot of curly braces that open like so { but will always have a
counterpart of } this also applies to square brackets that will have both [and] and rounded brackets of (
and) so it is a good idea to check if these are balanced, if you see any double-quotes or " then you should
always expect to see another " nearby. Where you see any semi colons or ; remember to include them,
sometimes the smallest mistake that is easy to fix makes it work once corrected!

Should you make any mistakes with the HTML or Razor these may be harder to spot and may just not look
correct in the Browser so make sure any angled brackets you see should open with < then you should
expect to see > nearby although you might see one on their own in C# but for C# that's okay!

Errors will give you an idea of where to look for the mistake, they will often give a line number which you

can check against the value shown at the bottom of Visual Studio Code you can always Copy and Paste
any code in the Workshop but read through what you copied to see if you understand what it is doing!

Qtutorialr.com 11 BIOI®)

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

etutorialr.com

Namespaces

While still in Visual Studio Code at the top of SpotifyProvider.cs from the Explorer type in the following:

using Blazored.LocalStorage;

using Microsoft.AspNetCore.Components;

using Spotify.NetStandard.Client;

using Spotify.NetStandard.Client.Authentication;
using Spotify.NetStandard.Client.Interfaces;
using Spotify.NetStandard.Requests;

using Spotify.NetStandard.Responses;

namespace Blazorfy;

// Provider Class

C# has namespaces that group together related functionality and you can use existing functionality by
including them at the top of a class with using and in this case they are for the Packages that were
added for Blazored.LocalStorage and Spotify.NetStandard along with one that is needed from .NET.

Also please check these have been typed in correctly or you can Copy and Paste as in C# casing matters,
for example spotify.netstandard.client is wrong but Spotify.NetStandard.Client is correct.

There is also a namespace of Blazorfy which will help group together the objects for the Workshop and
finally there is a Comment which is anything with // in front of it below such as // Provider Class
below which the class will be defined in the next part of the Workshop.

If you need to format any Code you have Copy and Pasted in Visual Studio Code you can do so with

Shift+Alt+F on Windows or Shift+Option+F on Mac or right-click in any file and select Format
Document.

@tutorialr.com 12 BIOI®)

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

Qtutorialr.com

Class

While in Visual Studio Code for SpotifyProvider.cs below the Comment of // Provider Class type in the
following which will define the structure of class for the Provider with Comments to help you put things
in the right place later in the Workshop:

public class SpotifyProvider
{ // Constants
// Members
// Private Methods
// Constructor
// Property
// Login Method
// Logout Method
// Is Logged In Method
// Handle Code Method
// User Method

// List Method

// Search Method

This class will be populated with the functionality for the Provider and will be used throughout the
Workshop and can use the Comments so you know where you need to put things in the class.

You will be guided through each part step-by-step but the next part will be to add class so it can be used
later in the next part of the Workshop.

Qtutorialr.com 13 c® 0O

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

Qtutorialr.com

Program

In Visual Studio Code you will also see a Program.cs file in the Explorer that when selected should be
similar to the following:

nomos

Ln10.Col1 Spacesid UTFS CRIF C: & O

Within Program.cs add using for Blazored.LocalStorage below using Blazorfy; by typing in the following:

using Blazored.LocalStorage;

Then while still in Program.cs and above the await builder.Build().RunAsync(); type in the following:

builder.Services.AddBlazoredlLocalStorage();
builder.Services.AddScoped<SpotifyProvider>();

You can then go to the Menu in Visual Studio Code and select File and then Save All, you may see in the
Terminal a message saying Do you want to restart your app - Yes (y) / No (n) / Always (a) / Never (v)?
you can select the Terminal then type y for Yes or a for Always to keep what you have done so far.

This will add what is needed by Blazored.LocalStorage and will also add the class of SpotifyProvider to be
available to the Dependency Injection system used in Blazor. Dependency Injection allows specific
functionality to be provided to an application to anywhere that needs it. In C# an Instance of a class is
needed in order for it to be used but by adding the class this way we can get Dependency Injection to
do it for us, if you want to know more about it this concept then you can read up on it after you have
completed the Workshop.

At this point you should have modified the files of launchSettings.json and Program.cs along with creating a

file called SpotifyProvider.cs you can go over the previous steps now to double-check you've done
everything correctly then proceed to implementing Authentication in the next section of the Workshop.

Qtutorialr.com 14 c® 0O

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

etutorialr.com

Authentication

Account

In this part of the Workshop you will learn how to Login to Spotify and also Logout. You can Create your
own Account on Spotify or use an existing Account by launching another Browser and go to the Spotify
for Developers website at developer.spotify.com.

e Spotify. for Developers DISCOVER pocs CONSOLE COMMUNITY DASHBOARD USE CASES

uild experiences for millions of music
lers with playback, personalization,
1 much, much more.

DISCOVER FEATURES

Create & manage your Spotify
integrations.

Meet your dashboard. Log in to create new integrations and manage your Spotify credentials. Just connect

Spotify Developer to your Spotify account.

COMMUNITY USE CASES SUPPORT USE CASES

Mobile Apps DISCOVER LEGAL

The Dashboard is where you can Create and Manage integrations that use Spotify.

etutorialr.com 15 c® 0O

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/
https://developer.spotify.com/

e

e

tutorialrcom

If you have an existing Account for Spotify select Log In and then type in your Email address or
username and Password on the following screen and then select Log In:

@ Spotify'

To continue, log in to Spotify.

i CONTINUE WITH FACEEOOK

@ CONTINUE WITH APPLE

G CONTINUE WITH GOOGLE

orR

Email address or username

Email address or username

Password

Password

e -

Don't have an account?

Forgot your password?

SIGN UP FOR SPOTIFY

P
If don't have an existing Account for Spotify then select Sign-up for a free Spotify account here and
then select Sign up for Spotify and then fill in the details on the following page:
eSpotify‘
Sign up for free to start
listening.
(G sign up with Google)
Sign up with your email address
What's your email?
Enter your email ‘
Confirm your email
Enter your email again ‘
Create a password
Create a password ‘
What should we call you?
Enter a profile name ‘
This appears on your profile
What's your date of birth? n
Day Month Year Rl

tutorialr.com 16 c® 0O

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

etutorialr.com

Once the Account has been created or if have logged into an existing Account for Spotify then you should
get the following option to Accept the Terms and Conditions, just read through this then select the |
accept the Spotify Developer Terms of Service and then select Accept the Terms as follows:

e Spotify for Developers DISCOVER pocs CONSOLE COMMUNITY DASHBOARD USE CASES

Please Accept Our Terms of Service To Continue

In order to use the tools and services provided by Spotify for Developers, you need to accept our Terms of Service below.

Spotify Developer Terms of Service

Effective as of 27 September 2021.

.
Introduction

Hello and welcome to the Spotify Developer Terms (the “Developer Terms”)!

We made some changes to these terms and, in the spirit of transparency, we want to be clear about what changed, so here’s a high level

summary e of the key changes

panded Section V Users & Data conceming the use and processing of Spotify Personal Data
tection Appendix into tf ms.
h the key

when using and developing with the Spotify Platform.

which mean you may need to submit your application for review by Spotify if you hit certain thresholds. >

ACCEPT THE TERMS CANCEL

Once you have selected Accept the Terms then you will be taken to the Dashboard as follows:

e Spotify for Developers DISCOVER DOCS CONSOLE COMMUNITY DASHBOARD USE CASES

Dashboard .

@tutorialr.com 17 BIOI®)

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

tutorialrcom

Once in the Dashboard you can then select Create an App and then enter the App Name as Blazorfy and
the App Description as Blazorfy and then after reading the Developer Terms of Service and Branding
Guidelines select the option for | understand and agree with Spotify’s Developer Terms of Service and
Branding Guidelines then select the Create option.

CREATE AN APP

CANCEL CREATE

Once the App has been created you will see the following Overview where you will need to Copy and
Paste the Client ID to somewhere so it can used later in the Workshop as follows:

es;)otify for Developers DISCOVER pocs CONSOLE COMMUNITY DASHBOARD USE CASES

+ BACK TO DASHBOARD > OVERVIEW

Blazorfy
Submit a quota

Blazorfy extension request

© EDIT SETTINGS (USERS AND ACCESS) (LoGouT

App Status Dex mode s
Client ID de3e4cad4dd44b6497e4d4dfad048c0a

No data available.
Check back when you've made some

requests using this app for data.

Qtutorialr.com

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

etutorialr.com

Then select the Edit Settings from the Overview for the App and then within Edit Settings in the section
for Redirect URIs and in the box with https.//example.com/callback type in https://localhost:4321/ and
select Add and then in the box with https.//example.com/callback type in http://localhost:1234/ and then
select Add from the following screen:

EDIT SETTINGS

Application name

Blazorfy

Application description
Blazorfy

Website

Redirect URIs

Bundle IDs

Then from the Overview for the App select Users and Access as follows:

e Spotify for Developers DISCOVER pocs CONSOLE COMMUNITY DASHBOARD USE CASES

+- BACK TO DASHBOARD > OVERVIEW > USERS AND ACCESS

Blazorfy

Blazorfy

® EDIT SETTINGS USERS AND ACCESS LoGouT

Submit a quota
extension request

App Status Development mode
Client ID cd2d7dfeaddaabe497esdadfadeascoa

Users and Access

Manage the Spotify users you want to allow access to your app in development mode. The users you choose to configure for

this app can authenticate with your app. You can add a maximum of 25 users in development mode. If you plan to onboard

more users, please consider submitting a quota extension request.

SPOTIFY ACCOUNT NAME DATE ADDED

0 assigned, 25 available

pocs COMMUNITY USE CASES SUPPORT USE CASES

General News Mobile Apps DISCOVER LEGAL

Web API Forum Hardware CONSOLE Terms of Service

Qtutorialr.com 19 BIOI®)

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

etutorialr.com

Then from page for Users and Access select the option for Add New User and then type in the Name and
Spotify Account (email address) for your Account on Spotify and then select Add as follows:

ADD NEW USER

Spotify Account (email address)

Once your Account shows up in the Users and Access and you have the Client Id then you can proceed
with the rest of the Workshop.

e Spotify for Developers DISCOVER pocs CONSOLE COMMUNITY DASHBOARD USE CASES

+ BACK TO DASHBOARD > OVERVIEW > USERS AND ACCESS

Blazorfy
Submit a quota

Blazorfy extension request

® EDIT SETTINGS (USERS AND ACCESS) (LoGcouT)

AppStatus D mode (what does this mean?)

Client ID cd2d7dfeaddaabe4g7eddadfadaascoa

Users and Access

Manage the Spotify users you want to allow access to your app in development mode. The users you choose to configure
for this app can authenticate with your app. You can add a maximum of 25 users in development mode. If you plan to
onboard more users, please consider submitting a quota extension request.

SPOTIFY ACCOUNT NAME DATE ADDED

1 blazorfy@example.org First Last Nov 29, 2022

1assigned, 24 available

pocs COMMUNITY USE CASES SUPPORT USE CASES

General News Mobile Apps DISCOVER LEGAL

Qtutorialr.com

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

Qtutorialr.com

Constants

Back in Visual Studio Code from the Explorer select SpotifyProvider.cs which should have the following

contents from the Start of the Workshop:

using Blazored.LocalStorage;

using Microsoft.AspNetCore.Components;

using Spotify.NetStandard.Client;

using Spotify.NetStandard.Client.Authentication;
using Spotify.NetStandard.Client.Interfaces;
using Spotify.NetStandard.Requests;

using Spotify.NetStandard.Responses;

namespace Blazorfy;

// Provider Class

public class SpotifyProvider

{
//

//
//
//
//
//
//
//
//
//
//
//

Constants

Members

Private Methods
Constructor
Property

Login Method
Logout Method

Is Logged In Method
Handle Code Method
User Method

List Method

Search Method

Then in Visual Studio Code within SpotifyProvider.cs you will define Constants with const such as the
client_id as a string for text and how many and the maximum number of items that will be retrieved
later as an int for numbers. These will only be used inside the class so are declared with private.

Below the Comment of // Constants on type the following, replacing clientid with your Client Id

private const string client id = "clientid";

privat
privat

e const int total =

e const int max = 1090;

Qtutorialr.com

2 ©@®O

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

etutorialr.com

Members

While still in SpotifyProvider.cs in Visual Studio Code you will define some Members by typing below the
Comment of // Members the following:

private readonly NavigationManager _navigation;
private readonly IlLocalStorageService _storage;
private readonly ISpotifyApi _api;

private readonly Uri _redirectUri;

private AccessToken? _token;

Members represent values within the class and these are used within the class so are marked private
with the first four being set in the Constructor later so can use readonly to not set them again there.

NavigationManager is needed to both get the current address or URI of the page and to redirect to a
particular page or URI when needed.

ILocalStorageService is from the Package of Blazored.LocalStorage and is an Interface which allows
functionality to be exposed from a class but be abstracted so the functionality could change but as long
as that stays the same anything using the Interface will still work, with this functionality being the ability to
load or save information needed for the Workshop in the Browser.

ISpotifyApi is also an Interface and is from the Package of Spotify.NetStandard which will be used to
perform the functionality needed from Spotify which will also use the Uri which will be passed to Spotify
and an AccessToken is defined which will be returned from Spotify when have successfully logged in.

Methods

While still in SpotifyProvider.cs in Visual Studio Code you will define some Methods by typing below the
Comment of // Private Methods the following:

private Uri GetCurrentUri() =>
_nhavigation.ToAbsoluteUri(_navigation.Uri);

private async Task SetTokenAsync(AccessToken? token) =>
await _storage.SetItemAsync(nameof(_token), token);

These Methods will only be used within the class itself so again are declared with private. The first one
will help get the current address of the page of the Browser and uses the NavigationManager that was
declared previously. The second Method will use the ILocalStorageService to store the AccessToken
from Spotify. These Methods use the Arrow Syntax with the => for an Expression Body which is useful
when they only have one line to save space.

Qtutorialr.com 22 BIOI®)

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

etutorialr.com

Constructor

While still in SpotifyProvider.cs in Visual Studio Code you will define the Constructor by typing below the
Comment of // Constructor the following:

public SpotifyProvider(
HttpClient client,
NavigationManager navigation,
ILocalStorageService storage)

{
_storage = storage;
_havigation = navigation;
_redirectUri = new Uri(GetCurrentUri().GetLeftPart(UriPartial.Path));
_api = SpotifyClientFactory.CreateSpotifyClient(client, client_id).Api;
}

Constructor sets up a class as well as allowing any other class or interface to be provided using
Dependency Injection which in this case includes HttpClient which will provide the ability to
communicate that is used in the Method of SpotifyClientFactory.CreateSpotifyClient along with
the client_id. Both the NavigationManager and ILocalStorageService are also provided and

the redirection Uri is also set by using the Method of GetCurrenturi.

Property

While still in SpotifyProvider.cs in Visual Studio Code you will define a Property by typing below the
Comment of // Property the following:

public bool IslLoggedIn =>
_token != null;

A Property is the best way to expose values outside of a class in C# which is also done by using public
so that this value is available to anywhere else that uses this class. This Property will be used to indicate if
the Account has been logged or not with a bool which is a true or false value by checking the
AccessToken which also had a question mark or ? which means it can have null as the value which is what
is being checked by using !'= which means not equal to, so when the value is null the Property will be
false and if the value is not null the Property will be true.

You can then go to the Menu in Visual Studio Code and select File and then Save All you may see in the

Terminal a message saying Do you want to restart your app - Yes (y) / No (n) / Always (a) / Never (v)?
you can select the Terminal then type y for Yes or a for Always to keep what you have done so far.

Qtutorialr.com 23 BIOI®)

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

etutorialr.com
Login

Next within SpotifyProvider.cs in Visual Studio Code you will define a Method by typing below the
Comment of // Login Method the following:

public async Task LoginAsync()
{

var responseUri = _api.GetAuthorisationCodeAuthUri(
_redirectUri,
nameof (SpotifyProvider),
Scope.None,
out string codeVerifier);
await _storage.SetItemAsync(nameof(codeVerifier), codeVerifier);
if (responseUri != null)
_navigation.NavigateTo(responseUri.ToString());

There's a few things going on in this Method the first thing to notice is it has public which allows it to be
used outside the class it also has async and Task as this Method performs some functionality
asynchronously which means something will happen then the result of this action will be waited for with
await and then the application can continue.

The first thing the Method does is get the Uri needed to Authenticate with Spotify and the Uri to
redirect back to once this is done is provided along with a state using nameof (SpotifyProvider) and a
Scope which controls what access to Account specific functionality is needed but in this case there’s
nothing of that nature required so None is used. Another value is also output using the out which is a Code
Verifier which is needed to complete the Authentication process.

The next thing the Method does is to store the Code Verifier in the Storage of the Browser and it is this
Method that is asynchronous then if there was a Uri returned from the first part of the Method then finally
the NavigationManager is used to redirect to it on Spotify.

Logout

Then within SpotifyProvider.cs in Visual Studio Code you will define another Method by typing below the
Comment of // Logout Method the following:

public async Task LogoutAsync()

{
await SetTokenAsync(_token = null);

_navigation.NavigateTo(_redirectUri.ToString(), true);

This will be used to log out of an Account and it does this by setting the AccessToken to null and then
storing that using the Method of SetTokenAsync then finally it will use NavigationManager to redirect to
the Uri for redirection and will force the page to refresh when doing so.

Qtutorialr.com 24 c® 0O

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

etutorialr.com
Logged In

Then within SpotifyProvider.cs in Visual Studio Code you will define the next Method by typing below the
Comment of // Is Logged In Method the following:

public async Task<bool> IsLoggedInAsync()
{

_token ??= await _storage.GetItemAsync<AccessToken>(nameof(_token));
if (_token != null)

{

if (_token.Expiration < DateTime.UtcNow)

{
}

else

{
}

return IslLoggedIn;

await LogoutAsync();

_api.Client.SetToken(_token);

}

return false;

This Method checks and does a few things so let's break it down, overall it will return a value that is either
true to indicate the Account is logged in or false if it is not.

The first thing it does is use the ILocalStorageService to set the AccessToken you'll also notice the use
of the ??2= which is known as the null-coalescing assignment Operator, but in plain English it means it will
only perform the action to get the AccessToken if it has not already been set to something, that is it will
still be null.

The AccessToken is then checked to see if it is not null by using the != or not equal to Operator and if
this is false the next part will be skipped and the return from the Method will be false.

If the AccessToken is not null was true then next thing is to check if the AccessToken has expired by
comparing the Expiration against the current date and time in UTC and if expired we logout using
LogoutAsync or if it has not expired we will to use a Method in the Client for ISpotifyApi to set the

AccessToken.

Then we can just return the Property of IsLoggedIn to indicate the Account is logged in.

Qtutorialr.com 25 BIOI®)

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

etutorialr.com
Handle Code

Next within SpotifyProvider.cs in Visual Studio Code you will define the next Method by typing below the
Comment of // Handle Code Method the following:

public async Task<bool> HandleCodeAsync(string? code)

{
if (code != null)

{

string codeVerifier =
await _storage.GetItemAsync<string>(nameof(codeVerifier));
_token = await _api.GetAuthorisationCodeAuthTokenAsync(
GetCurrentUri(),
_redirectUri,
nameof (SpotifyProvider),
codeVerifier);
await SetTokenAsync(_token);
_navigation.NavigateTo(_redirectUri.ToString());

}
return await IsLoggedInAsync();

This Method will be used as part of the process of logging into Account when the process is competed in
the Browser for Spotify it will redirect back to the redirection Uri that was specified along with returning a
Code which will be handled with this Method.

The first thing is that the value passed in is checked to see if it is not null with the != or not equal to
Operator and if it does have a value then it can then get the Code Verifier from the Storage in the
Browser then this is used with the Method of GetAuthorisationCodeAuthTokenAsync in ISpotifyApi.
The response Uri is needed which will be used to get the Code that was passed along from Spotify and
the same State is used as before and the Code Verifier is also provided.

The next thing is the Method for SetTokenAsync is called to store the AccessToken and then the

NavigationManager will be used to reload the page to complete the logging in process, should no Code
be provided then the result of the Method of IsLoggedInAsync will be used instead.

User

Finally within SpotifyProvider.cs in Visual Studio Code you will define the Method to get the User for the
Account by typing below the Comment of // User Method the following:

public async Task<PrivateUser> GetUserAsync() =>
await _api.GetUserProfileAsync();

This Method uses the Arrow Syntax with the => for an Expression Body which is useful when a Method only
has one line to save space and will get the User for the Account which will be used in a Component which
will be created in the next part of the Workshop.

Qtutorialr.com 26 BIOI®)

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

Qtutorialr.com

Component
Within Visual Studio Code from the Explorer and move the Cursor over the Blazorfy you will see a New

Folder... option next to the New File... option if you select New Folder... and then type in the name as
follows then press Enter:

Components

With the Folder for Components selected you should then select the New File... option and type in the
name as follows then press Enter:

LoginItem.razor

This will form the basis of a Razor Component which is also known as a Blazor Component in Blazor or
just Component in the Workshop and for now you should have a blank Component as follows:

Domao

Lni,Col1 Spacesd UTF-8 CRIF ASPNETRazor 2 O

Components allow you to reuse or define either some functionality or some Razor and HTML to create a
piece or Component of an application that you can see in Blazor.

Qtutorialr.com 27 BIOI®)

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

etutorialr.com

Within Loginltem.razor in Visual Studio Code you can define the Component by typing in the following:

@namespace Blazorfy
@inject SpotifyProvider _provider;
@if (Value)

{
<button class="btn btn-danger" @onclick="_provider.LogoutAsync">Logout</button>
@Item?.DisplayName
}
else
{
<button class="btn btn-success" @onclick="_provider.LoginAsync">Login</button>
}
@code
{
[Parameter]
public bool Value { get; set; }
public PrivateUser? Item { get; set; }
protected override async Task OnParametersSetAsync()
{
if (value)
{
Item = await _provider.GetUserAsync();
}
}
}

The first part of the Component is the namespace for the application which is Blazorfy then the next part
will provide the Instance of the SpotifyProvider using Dependency Injection with inject.

There's a Property for Value which can be either true or false as it is a bool and will be used to indicate
to the Component that the Account is logged in or not.

If the Account is logged in, which will be provided to the Component, then the Property for Value will be
true the with the DisplayName of the currently logged in Account and a button to Logout will be
displayed which will call the Method of LoginAsync from the class. Should the Property for Value be
false then the option to Login will be displayed which will call the Method of LogoutAsync.

There's also an additional Property for a PrivateUser which is for the user of the Account from Spotify
then there is a special Method where the implementation of which has been overridden to provide our own
denoted with override in this case it is for OnParametersSetAsync which is called when the Properties
for the Component are set by Blazor and within this we get the details for the user of the Account.

You might be wondering why Value is used here rather than checking if the Account is logged in directly,
well we can take advantage of the fact when a value is passed into a Component and that value changes it
will cause the Component to be updated rather than having to write that functionality ourselves as Blazor
will automatically output a Component again should the value passed into it change.

Qtutorialr.com 28 BIOI®)

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

Qtutorialr.com

Index

Next within Visual Studio Code from the Explorer for Blazorfy open Pages by selecting the > next to it
and select index.razor, where you will see what is currently being displayed in the Browser as follows:

n1,Col1 Spacesd UTF-8withBOM CRUF ASPNETRazor & 3

OUTUNE
TIMELINE

X @0A0 & BIbuarody In2,Coll Spacesd UTF-8withBOM CRLF ASPNETRazor &

Qtutorialr.com

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

etutorialr.com

Within Index.razor in Visual Studio Code you can define the new Page by typing in below @page "/" the
following which will also include some Comments to help you place some items later in the Workshop:

@inject SpotifyProvider _provider;
<LoginItem Value="@ provider.IsLoggedIn" />
@if (_provider.IsLoggedIn)

{
// Items Output
}
@code
{
[Parameter]
[SupplyParameterFromQuery]
public string? Code { get; set; } = null;
// Items Property
protected override async Task OnParametersSetAsync()
{
if (await _provider.HandleCodeAsync(Code))
{
// Items List
}
}
}

This Page now includes the same line to provide the Instance of the SpotifyProvider using Dependency
Injection with inject as the Component. Then there is the Component with the Value being provided
with the Property for IsLoggedIn from the class. This is then followed by the same Property being used
in an if which will be used later in the Workshop to display some items.

There is also Code for the Page which includes a Property for the Code which will be provided to this page
by Spotify after completing the login process this is set to be a Parameter with an Attribute which is
within square brackets of [and] so that Blazor expects this to be set along with another Attribute to tell
Blazor to get this value from the Query String which is part of the Uri returned from Spotify.

Then there is a special Method where the implementation of which has been overridden to provide our
own denoted with override in this case it is for OnParametersSetAsync which is called when the
Properties for the Component are set by Blazor and within this we will call the Method for
HandleCodeAsync providing the Code that was obtained that will complete the logging process within the
application.

You can then go to the Menu in Visual Studio Code and select File and then Save All you may see in the

Terminal a message saying Do you want to restart your app - Yes (y) / No (n) / Always (a) / Never (v)?
you can select the Terminal then type y for Yes or a for Always to keep what you have done so far.

Qtutorialr.com 30 BIOI®)

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

Qtutorialr.com

If you return to the Browser you will see an option to Login as shown below:

If you select the Login option you will be presented with something like the following where you should
type in the Email Address for your Account and the Password and then select Log In

@ Spotify

To continue, log in to Spatify.

El CONTINUE WITH FACEBOOK

Forgot your password?

o member mi
8 Remember me LoG IN

Don't have an account?

SIGN UP FOR SPOTIFY

Fy |

If for any reason you don't see this screen then go over the previous steps in the Workshop to make sure
you haven't missed anything and also make sure you have an active Internet connection. If you do see this
screen correctly then you can type in the Email Address from the list of Accounts for your number along
with the Password and then select Log In you can leave the Remember Me option ticked so you can skip
this step next time you try to login. If you get an Error at the bottom of the Browser and you don't see any
mistakes then you can Refresh the Browser and that might fix the problem!

Qtutorialr.com 31 c® 0O

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

’v tutorialr.com
Once you have selected Log In you should see something like the following Authorise page displayed:

b3

- o
s = @ @ -

@ Spotify

Blazorfy

You agree that Blazorfy will be able to:

many
and your public playlists

This will mention “"Blazorfy” and what access it will have to Account data from Spotify which will just be
enough to display User information, then you just need to select Agree.

Once you have selected Agree you will be redirected from Spotify back to Blazorfy and you should see
the following which will display your Username next to the Logout option.

You can then select Logout which should Refresh the page and display Login and with that you have
completed the Authentication part of the Workshop.

After the Break you will get a chance to add more Pages and some more functionality to the Provider to
display information from the Library of content from Spotify!

Qtutorialr.com 32 c® 0O

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

Qtutorialr.com
Library

In this part of the Workshop you will learn how to get information from the Library of content from
Spotify including Categories, Playlists, Albums and Podcasts. You'll build Components to display the
details, add Pages for content from the Library and even create a Component that will allow you to see
the same details using the Spotify application on your iPhone or Android Phone if you have Spotify!

Categories

Here we'll update the index page to show Categories, to do this return to Visual Studio Code for Blazorfy
and then from Explorer select SpotifyProvider.cs as follows:

DoMos o x

In111.Col 1 Spacesd UTF8 CRIF c¢ &

You should also still have open the Browser showing the Login option, if you don't then in Visual Studio
Code if it was still open select the Terminal and then press Ctrl+C in Windows or Command+C on Mac
on the Keyboard, or if Visual Studio Code was closed relaunch Visual Studio Code and then select the
New Terminal then in the Terminal. With the Terminal in Visual Studio Code open type the following
which should relaunch the Browser.

dotnet watch

Qtutorialr.com 33 c® 0O

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

etutorialr.com

Then in Visual Studio Code within SpotifyProvider.cs you will define part of a Method that will be used to
display the Categories, so below the Comment of // List Method type the following Method:

public async Task<List<TItem>> ListAsync<TItem>(string? id = null)
where TItem : class

{
var results = new List<TItem>();
var page = new Page() { Limit = total };
int count;
do
{
Paging<TItem>? items = null;
// Categories
if (typeof(TItem) == typeof(Category))
{
items = await _api.GetAllCategoriesAsync(page: page)
as Paging<TItem>;
}
// Playlists
// Albums
if (items != null)
{
results.AddRange(items.Items);
page.Offset += total;
}
count = items?.Count ?? O;
}
while (count > @ && results.Count < max & & count == total);
return results;
}

This Method is a bit more complicated so feel free to Copy and Paste it into Visual Studio Code instead of
typing it out. This Method uses a concept known as Generics which allows the type of a class to vary,
when we had string and int before those were types. In this case there will be a List of a class which
will be returned from this Method.

The first part of the Method uses the Generic syntax and also has a List of the items that will be returned.
Then there is a Page that will be used to return the items up to the total that was defined earlier and there
is a Variable of count to keep track of how many items have been retrieved.

This method then has a do — while which will keep looping when there are a number of items with count,
the number of total items is less than the maximum with max and there are still items.

The Spotify.NetStandard package uses a Paging object to contain anything returned from Spotify. When
we provide the type of Category it will use the Method of GetAllCategoriesAsync which will be of
Paging<Category> which is converted to Paging<TItem> but TItem will actually be Category in this case.

Then there’s some logic to add what was obtained to results and go to the next Page where the loop will

continue until any of the conditions being checked for are no longer satisfied. If you'd like to learn more
about Generics then you can search for .NET Generics online.

@tutorialr.com 34 c® 0O

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

Qtutorialr.com

Then while still in Visual Studio Code from Explorer select the Folder for Components then with the
Folder for Components selected you should then select the New File... option and type in the name as
follows then press Enter:

CategoryItem.razor

This will form the basis of another Component and will be a blank Component as follows:

nomos o X

In1,Col1 Spacesd UTF-S CRIF ASPNETRazor & (3

Qtutorialr.com 35 c® 0O

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

etutorialr.com

Within Categoryltem.razor in Visual Studio Code you can define this Component by typing in the
following:

@namespace Blazorfy

<div class="card">
@if (Value.Images.Count > 0)
{

<img class="card-img-top"
src="@Value.Images[0].Url" alt="@Value.Name" />
}

<div class="card-body">
<h5 class="card-title">
@Value.Name
</h5>
</div>
</div>

@code
{

[Parameter]
public Category Value { get; set; } = new();

The first part of the Component is the namespace for the application which is Blazorfy. Then there is a
link to a Page that will be created in the next part of the Workshop for Playlists which will pass through an
Id.

Then there is some HTML to define the layout of the Category Item this includes a check to see if there are
any Images with if that if true will then use the img to display the first image since Images is an Array
you use the [and] to provide an Index in this case 0 to get it and we also set the alt of the img to the
Name of the Category which is also displayed within a h5 and the Category itself will be provided to the
Property for Value.

Qtutorialr.com 36 BIOI®)

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

Qtutorialr.com

Within Visual Studio Code from the Explorer for Blazorfy open Pages by selecting the > next to it and
select index.razor as follows:

TIMELINE
¥ @0A0 & ElBlasordy Ln7,Col5 Spaces:d UTF-Bwith BOM CRIF ASPNETRazor & O

Within Index.razor in Visual Studio Code below the Comment of // Items Property type the following:

public List<Category> Items { get; set; } = new();

This Property will represent the List of Category that will be obtained from the Provider.

You can then go to the Menu in Visual Studio Code and select File and then Save All you may see in the
Terminal a message saying Do you want to restart your app - Yes (y) / No (n) / Always (a) / Never (v)?
you can select the Terminal then type y for Yes or a for Always to keep what you have done so far.

Qtutorialr.com 37 c® 0O

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

Qtutorialr.com

While still in Index.razor in Visual Studio Code below the Comment of // Items List type the following:

Items = await _provider.ListAsync<Category>();

This will use the Method of ListAsync that was defined earlier in the Provider with the type of Category.

Then while still in Index.razor and below the Comment of // Items Output type the following:

<hl>Categories</hl>
<div class="container">
<div class="row row-cols-1 row-cols-md-4 p-2 g-2">
@foreach (var item in Items)

{
<div class="col">
<CategoryItem Value="@item" />
</div>
}
</div>

</div>

This will be used to output the Categories from the Property of Items and also uses the Component of
CategoryItem to display them.

Qtutorialr.com 38 c® 0O

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

Qtutorialr.com

Then in Visual Studio Code from the Explorer for Blazorfy open Shared by selecting the > next to it in
Explorer and select NavMenu.razor as follows:

1
¥ @0A0 & ElBlasordy i, Coll Spacesd UTF-Bwith BOM CRLF ASPNETRazor & O

With NavMenu.razor selected where it says Home change this to say the following:

Categories

Then you can then go to the Menu in Visual Studio Code and select File and then Save All you may see in
the Terminal a message saying Do you want to restart your app - Yes (y) / No (n) / Always (a) / Never
(v)? you can select the Terminal then type y for Yes or a for Always to keep what you have done so far.

Qtutorialr.com 39 c® 0O

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

e

e

tutorialrcom

If you return to the Browser you will see an option to Login and the first option should be Categories as
shown below:

- 8 X
% 1 & @

Blazorfy About

A Categories

Once you have selected Login you should see something like the following Authorise page displayed:

[| @ authorze - Spotity x |+ IR
& G 1 hups//accountsspotifycom/en/suthoriz " g v ez S — 4 fhac Al @ @ -

@ Spotify’

Blazorfy

You agree that Blazorfy will be able to:

View your Spetify account data

Your name and usermname, your profile picture, how many
followers you have on Spotify and your public playlists

You can remove this access at any time at spotify.com/account

For more information about how Blszorfy can use your personal dats,
please see Blazorfy's privacy palicy.

® Logged in as Blazorty.

CANCEL

tutorialr.com 40 c® 0O

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

Qtutorialr.com

Once you have selected Agree you will be redirected from Spotify back to Blazorfy and you should see
the following which will display “Blazor Workshop” followed by your Number next to the Logout option
and then below this will be the Categories similar to as follows:

B @ sl x o=

Blazorfy

A Categories Logout | Biazorty |
Categories

If you don't see this list of Categories then go through the previous steps in the Workshop and check that
you've not missed anything, you can Copy and Paste anything you're not sure of from this if needed.

Each of the Categories has a link to a Page which will be created in the next part of the Workshop where
you'll get to build the Page for Playlists along with a special Component that you can use with the Spotify
mobile application for iPhone and Android.

You'll probably notice, if this is still the case that one of the images is not correct for Party, as part of

Spotify for Developers there is a Forum where you can report issues and I've reported this incorrect asset
to them, should this have been resolved then all the images should appear consistently.

Qtutorialr.com 41 c® 0O

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

Qtutorialr.com

Playlists

We'll add a new Page to show and Search for Playlists to do this return to Visual Studio Code for
Blazorfy and then from Explorer select SpotifyProvider.cs as follows:

Domaos o x

1n140,Col 5 Spacesd UTF-8 CRIF C#

You should also still have open the Browser showing the Login option, if you don't then in Visual Studio
Code if it was still open select the Terminal and then press Ctrl+C in Windows or Command+C on Mac
on the Keyboard, or if Visual Studio Code was closed relaunch Visual Studio Code and then select the
New Terminal then in the Terminal. With the Terminal in Visual Studio Code open type the following
which should relaunch the Browser.

dotnet watch

Qtutorialr.com 42 c® 0O

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

etutorialr.com

Then in Visual Studio Code within SpotifyProvider.cs you will define part of a Method that will be used to
display the Categories, so below the Comment of // Search Method type the following Method:

public async Task<List<TItem>> SearchAsync<TItem>(string query)
where TItem : class

{
var results = new List<TItem>();
var page = new Page() { Limit = total };
int count;
do
{
Paging<TItem>? items = null;
var searchType = new SearchType()
{
Playlist = typeof(TItem) == typeof(SimplifiedPlaylist),
Album = typeof(TItem) == typeof(Album),
Show = typeof(TItem) == typeof(SimplifiedShow)
s
var content = await _api.SearchForItemAsync(query, searchType, page: page);
// Playlists
if (typeof(TItem) == typeof(SimplifiedPlaylist))
{
items = content.Playlists as Paging<TItem>;
}
// Albums
// Podcasts
if (items != null)
{
results.AddRange(items.Items);
page.Offset += total;
}
count = items?.Count ?? O;
}
while (count > @ && results.Count < max & & count == total);
return results;
}

This Method is a bit more complicated so feel free to Copy and Paste it into Visual Studio Code instead of
typing it out but you can still go through it to see if you can understand what is going on in the Method.

This Method also uses Generics and is very similar to Method for ListAsync. It has a few differences, this
time it sets up a SearchType which has values that can be true or false to indicate the kind of Search
and are using the type of the Generic to set this accordingly then using this with SearchForItemAsync
and then for each type are getting the values for that.

There is also the use of typeof which is used to get the type of the class that is being used with the
Method, this is useful as we can use this to define different behaviour depending on what type it is.

You'll have noticed in the previous Method and this one for the count there are ?. and ?? being used, the

?. is known as the Elvis Operator and this will treat the value of Count as null if the value of items is and
then ?? can then be used to use 0 in place of the null.

@tutorialr.com 43 c® 0O

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

3 tutorialrcom
While still within SpotifyProvider.cs in Visual Studio Code in the Method of ListAsync below the

Comment of // Playlists type the following:

if (typeof(TItem) == typeof(SimplifiedPlaylist))

{
items = await _api.GetCategoryPlaylistsAsync(id, page: page)
as Paging<TItem>;

This part of the Method will use GetCategoryPlaylistsAsync to get the Playlists for a Category.
Then while still in Visual Studio Code from Explorer select the Folder for Components then with the

Folder for Components selected you should then select the New File... option and type in the name as
follows then press Enter:

Scannable.razor

This will form the basis of a shared Component and will be a blank Component as follows:

Domao

X @OA0 & BBax Ln1.Col1 Spacesd UTF-8 CRIF ASPNETRaor @ O
zorfy

Qtutorialr.com 44 c® 0O

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

etutorialr.com

Within Scannable.razor in Visual Studio Code you can define the Component by typing in the following:

@namespace Blazorfy
<img class="img-fluid"
src="https://scannables.scdn.co/uri/plain/svg/5c2d91/white/640/@Value"” />

@code
{

[Parameter]
public string Value { get; set; } = string.Empty;

This Component displays a special code that can be scanned using the Spotify application on iPhone or
Android in an img and will use a passed in Value which forms part of src.

We can break down how the code or “scannable” itself is generated like so, the svg part of the src is the
format of the image which can also be png or jpeg for those image formats.

The 5¢2d91 part of the src is the background colour of the code and white is the foreground colour which
can also be black then there is a number, in this case it is 640 which is the width of the image.

Finally the end part is the URI for a Spotify item such as a Playlist and other things you can share from
Spotify, you can find out more about Spotify Codes at spotifycodes.com.

Then you can then go to the Menu in Visual Studio Code and select File and then Save All you may see in
the Terminal a message saying Do you want to restart your app - Yes (y) / No (n) / Always (a) / Never
(v)? you can select the Terminal then type y for Yes or a for Always to keep what you have done so far.

@tutorialr.com 45 c® 0O

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/
https://www.spotifycodes.com/

Qtutorialr.com

Then while still in Visual Studio Code from Explorer select the Folder for Components then with the
Folder for Components selected you should then select the New File... option and type in the name as
follows then press Enter:

PlaylistItem.razor

This will form the basis of another Component and will be a blank Component as follows:

0Qmoe o

In1,Col1 Spacesd UTF-8 CRIF ASPNETRazor & 0O

Qtutorialr.com 46 c® 0O

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

etutorialr.com

Within Playlistitem.razor in Visual Studio Code you can define the Component by typing in the following:

@namespace Blazorfy
<div class="card">
@if (Value.Images.Count > @)

{
}

<Scannable Value="@Value.Uri" />
<div class="card-body">
<h5 class="card-title">
@Value.Name
</h5>
</div>
</div>

@code
{

[Parameter]
public SimplifiedPlaylist Value { get; set; } = new();

The first part of the Component is the namespace for the application which is Blazorfy. Then there is
some HTML to define the layout of a Playlist Item this includes a check to see if there are any Images with
if that if true will then use the img to display the first image since Images is an Array you use the [and]
to provide an Index in this case 0 to get it and we also set the alt of the img to the Name of the Playlist
which is also displayed within a h5 and the Playlist itself will be provided to the Property for Value. You'll
also see the inclusion of the Component for the Scannable which is provided with the Uri of the Playlist.

Then you can then go to the Menu in Visual Studio Code and select File and then Save All you may see in

the Terminal a message saying Do you want to restart your app - Yes (y) / No (n) / Always (a) / Never
(v)? you can select the Terminal then type y for Yes or a for Always to keep what you have done so far.

@tutorialr.com 47 c® 0O

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

Qtutorialr.com

Then in Visual Studio Code from Explorer select the Folder for Pages then with the Folder for Pages
selected you should then select the New File... option and type in the name as follows then press Enter:

PlaylistsPage.razor

This will form the basis of a Page and will be a blank Page as follows:

Domaos o x

X @0A0 & B Baory In1,Coll Spacesd UTF8 CRIF ASPNETRazor & O

Qtutorialr.com 48 c® 0O

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

Qtutorialr.com

Within PlaylistsPage.razor in Visual Studio Code you can define the Page by typing in the following:

@page "/playlists/"

@page "/playlists/{id}"

@inject SpotifyProvider _provider;
<LoginItem Value="@ provider.IsLoggedIn" />
@if (_provider.IsLoggedIn)

{
// Items Output

}

@code

{
public List<SimplifiedPlaylist> Items { get; set; } = new();
[Parameter]
[SupplyParameterFromQuery]
public string? Search { get; set; }
[Parameter]
public string? Id { get; set; }
// Items Method

}

This Page includes two page directives which create the Routes needed to navigate to this Page this
includes the one from the Category Item which will provide the Id and another which will be used from the
Menu later.

There is also an inject to provide the Instance of the SpotifyProvider using Dependency Injection.
Then there is the Component of LoginItem with the Value being provided with the Property for
IsLoggedIn from the class.

There is also the Property for Items to be displayed in the Page along with a Property for the Search that

will be provided, which will be from a query to the page from a Form which is denoted with the Attribute
of SupplyParameterFromQuery or one for Id should this be provided as a Parameter.

Qtutorialr.com 49 c® 0O

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

Qtutorialr.com

While still within PlaylistsPage.razor in Visual Studio Code and below the Comment for // Items Method
type the following Method:

protected async override Task OnParametersSetAsync()

{
Items.Clear();
if (await _provider.IsLoggedInAsync())
{
if (Search != null)
{
Items = await _provider.SearchAsync<SimplifiedPlaylist>(Search);
}
else
{
if (Id != null)
{
Items = await _provider.ListAsync<SimplifiedPlaylist>(Id);
}
}
}
}

This is a special Method where the implementation of which has been overridden to provide our own
denoted with override in this case it is for OnParametersSetAsync.

This will use Clear on Items to reset it and then will check if the user is logged in, then it checks to see if
Search has a value other than null, if it does then it will use the Method of SearchAsync and provide the
value to this, otherwise it will then check if the Id has a value, which it will should this be from the link from
the Category Item which provides this to the Page and will use the Method of ListAsync instead.

Qtutorialr.com 50 BIOI®)

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

etutorialr.com

Finally while still within PlaylistsPage.razor in Visual Studio Code and below the Comment for // Items
Output type the following:

@if (string.IsNullOrEmpty(Id))

{
<h1>Search @Search</h1>
<form @onsubmit="OnParametersSetAsync">
<input type="text" @bind="Search" @bind:event="oninput" />
<button class="btn btn-primary">Search</button>
</form>
}
else
{
<h1>Playlists</h1>
}

<div class="container">
<div class="row row-cols-1 row-cols-md-4 p-2 g-2">
@foreach (var item in Items)

{
<div class="col">
<PlaylistItem Value="@item" />
</div>
}
</div>

</div>

This defines how the Page will look, the first part will check if the Id is not present, that is not be null or an
empty string then if this is the case then it will display a title along with form to perform a Search this
has an input which is where the Playlist being looked for will be typed in and then there is a button to
perform the Search.

Should the Id be present then it will display different title. Below these the Component for the Playlist
Item will be used to display the Playlists.

Then you can then go to the Menu in Visual Studio Code and select File and then Save All you may see in

the Terminal a message saying Do you want to restart your app - Yes (y) / No (n) / Always (a) / Never
(v)? you can select the Terminal then type y for Yes or a for Always to keep what you have done so far.

@tutorialr.com 51 BIOI®)

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

Qtutorialr.com

Then in Visual Studio Code from the Explorer for Blazorfy open Shared by selecting the > next to it in
Explorer and select NavMenu.razor as follows:

1
¥ @0A0 & ElBlasordy Ln19,Col 76 Spaces:d UTF-Bwith BOM CRLF ASPNETRazor & O

With NavMenu.razor selected there will be a section for Counter as follows:

<div class="nav-item px-3">
<NavLink class="nav-link" href="counter">
 Counter
</NavLink>
</div>

Change where it says counter in href to be as follows:
playlists

Then you will need to change where it says oi-plus in the span to be as follows:
oi-list

Next you will need to change where it says Counter to be as follows:

Playlists

Then you can then go to the Menu in Visual Studio Code and select File and then Save All you may see in
the Terminal a message saying Do you want to restart your app - Yes (y) / No (n) / Always (a) / Never
(v)? you can select the Terminal then type y for Yes or a for Always to keep what you have done so far.

Qtutorialr.com 52 c® 0O

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

Qtutorialr.com

If you return to the Browser you will see the Categories along with a link to Playlists as shown below:

Logout | siazory |
Categories

©

Summer

Workout

a X%
Abou

t

@
@

Logout []
Playlists

Calming Instrumental Covers

| © Coffee Table Jazz

You can also select the Playlists option from the Menu and then type in your favourite Artist or anything
else and then select Search to find related Playlists. You'll also notice underneath each Playlist is a Spotify
Code, if you have Spotify on your iPhone or Android device you can use the option to scan these using the
app and can then checkout the Playlist for yourself.

If you don't see anything then check that you've completed each part correctly and double-check that what
you have is the same, if everything is working then you can proceed to the next part of the Workshop.

Qtutorialr.com 53 c® 0O

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

Qtutorialr.com
Albums

We'll add a new Page to show and Search for Albums to do this return to Visual Studio Code for Blazorfy
and then from Explorer select SpotifyProvider.cs as follows:

Domaos o x

TN
X ®0A0 & BIuory Ln178 Col24 Spacesd UTF8 CRIF C¢ &

You should also still have open the Browser showing the Login option, if you don't then in Visual Studio
Code if it was still open select the Terminal and then press Ctrl+C in Windows or Command+C on Mac
on the Keyboard, or if Visual Studio Code was closed relaunch Visual Studio Code and then select the
New Terminal then in the Terminal. With the Terminal in Visual Studio Code open type the following
which should relaunch the Browser.

dotnet watch

Qtutorialr.com 54 c® 0O

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

etutorialr.com

Then in Visual Studio Code within SpotifyProvider.cs you will define part of the Method that will be used to
get New Releases of Albums. In the Method of ListAsync and below the Comment of // Albums type
the following:

if (typeof(TItem) == typeof(Album))

{

items = await _api.GetAllNewReleasesAsync(page: page)
as Paging<TItem>;

This part of the Method will be used to get the New Releases from Spotify when the type is Album.

While still within SpotifyProvider.cs you will define part of the Method that will be used to Search for
Albums. In the Method of SearchAsync and below the Comment of // Albums type the following:

if (typeof(TItem) == typeof(Album))
{

}

items = content.Albums as Paging<TItem>;

This will get the Albums that are returned when the SearchType is Album, which is determined in
SearchAsync by checking if the type that is used is an Album and setting the value for this accordingly.

Then you can then go to the Menu in Visual Studio Code and select File and then Save All you may see in

the Terminal a message saying Do you want to restart your app - Yes (y) / No (n) / Always (a) / Never
(v)? you can select the Terminal then type y for Yes or a for Always to keep what you have done so far.

@tutorialr.com 55 BIOI®)

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

Qtutorialr.com

Then while still in Visual Studio Code from Explorer select the Folder for Components then with the
Folder for Components selected you should then select the New File... option and type in the name as
follows then press Enter:

AlbumItem.razor

This will form the basis of another Component and will be a blank Component as follows:

0Qmoe o

Ln1,Col1 Sparesd UTF-8 CRIF ASPNETRazor & (3

Qtutorialr.com 56 c® 0O

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

etutorialr.com

Within Albumlitem.razor in Visual Studio Code you can define the Component by typing in the following:

@namespace Blazorfy
<div class="card">
@if (Value.Images.Count > @)

{
}

<Scannable Value="@Value.Uri" />
<div class="card-body">
<h5 class="card-title">
@Value.Name
</h5>
</div>
</div>

@code
{

[Parameter]
public SimplifiedAlbum Value { get; set; } = new();

The first part of the Component is the namespace for the application which is Blazorfy. Then there is
some HTML to define the layout of an Album Item this includes a check to see if there are any Images
with if that if true will then use the img to display the first image since Images is an Array you use the [
and] to provide an Index in this case 0 to get it and we also set the alt of the img to the Name of the
Album which is also displayed within a h5 and the Album itself will be provided to the Property for Value.

You'll also see the inclusion of the Component for the Scannable which is provided with the Uri of the
Album.

This Component is identical to the one for Playlist but you could Optionally include different information
such as the Artist for the Album as SimplifiedAlbum has a Property for a List of Artists that could be
used for this purpose that you could add to this Component.

Then you can then go to the Menu in Visual Studio Code and select File and then Save All you may see in

the Terminal a message saying Do you want to restart your app - Yes (y) / No (n) / Always (a) / Never
(v)? you can select the Terminal then type y for Yes or a for Always to keep what you have done so far.

Qtutorialr.com 57 BIOI®)

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

Qtutorialr.com

Then in Visual Studio Code from Explorer select the Folder for Pages then with the Folder for Pages
selected you should then select the New File... option and type in the name as follows then press Enter:

AlbumsPage.razor

This will form the basis of a Page and will be a blank Page as follows:

Domaos o x

X @0A0 & B Baory In1,Coll Spacesd UTFS CRIF ASPNETRazor &

Qtutorialr.com 58 c® 0O

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

Qtutorialr.com

Within AlbumsPage.razor in Visual Studio Code you can define the Page by typing in the following:

@page "/albums"

@inject SpotifyProvider _provider;
<LoginItem Value="@ provider.IsLoggedIn" />
@if (_provider.IsLoggedIn)

{
// Items Output

}

@code

{
public List<Album> Items { get; set; } = new();
[Parameter]
[SupplyParameterFromQuery]
public string? Search { get; set; }
// Items Method

}

This Page includes a page directive which create a Route needed to navigate to this Page which will be
used from the Menu later.

There is also an inject to provide the Instance of the SpotifyProvider using Dependency Injection
and then there is the Component of LoginItem with the Value being provided with the Property for
IsLoggedIn from the class.

There is also the Property for Items to be displayed in the Page along with a Property for the Search that
will be provided, which will be from a query to the page from a Form which is denoted with the Attribute
of SupplyParameterFromQuery.

Qtutorialr.com 59 c® 0O

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

Qtutorialr.com

While still within PlaylistsPage.razor in Visual Studio Code and below the Comment for // Items Method
type the following Method:

protected override async Task OnParametersSetAsync()

{ Items.Clear();
if (await _provider.IsLoggedInAsync())
{ if (Search != null)
{ Items = await _provider.SearchAsync<Album>(Search);
}
else
{
Items = await _provider.ListAsync<Album>();
}
}
}

This is a special Method where the implementation of which has been overridden to provide our own
denoted with override in this case it is for OnParametersSetAsync.

This will use Clear on Items to reset it and then will check if the user is logged in, then it checks to see if
Search has a value other than null, if it does then it will use the Method of SearchAsync and provide the
value to this with the type of Album otherwise it will use the Method of ListAsync with the type of
Album.

Qtutorialr.com 60 BIOI®)

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

etutorialr.com

Finally while still within AlbumsPage.razor in Visual Studio Code and below the Comment for // Items
Output type the following:

@if (string.IsNullOrWhiteSpace(Search))

{
<h1>New Releases</h1l>
}
else
{
<h1>Search @Search</h1>
}

<form @onsubmit="OnParametersSetAsync">
<input type="text" @bind="Search" @bind:event="oninput" />
<button class="btn btn-primary">Search</button>
</form>
<div class="container">
<div class="row row-cols-1 row-cols-md-4 p-2 g-2">
@foreach (var item in Items)

{
<div class="col">
<AlbumItem Value="@item" />
</div>
}
</div>

</div>

This defines how the Page will look, the first part will check if the Search is not be null or an empty
string then if this is the case then it will display a title as New Releases or as Search.

Then there is a form to perform a Search this has an input which is where the Album being looked for will
be typed in and then there is a button to perform the Search and below this the Component for the
Album Item will be used to display the Albums.

Then you can then go to the Menu in Visual Studio Code and select File and then Save All you may see in

the Terminal a message saying Do you want to restart your app - Yes (y) / No (n) / Always (a) / Never
(v)? you can select the Terminal then type y for Yes or a for Always to keep what you have done so far.

Qtutorialr.com 61 BIOI®)

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

Qtutorialr.com

Then in Visual Studio Code from the Explorer for Blazorfy open Shared by selecting the > next to it in
Explorer and select NavMenu.razor as follows:

1
¥ @0A0 & ElBlasordy Ln24,Col 77 Spaces:d UTF-Bwith BOM CRLF ASPNETRazor & O

With NavMenu.razor selected there will be a section for Fetch Data as follows:

<div class="nav-item px-3">
<NavLink class="nav-link" href="fetchdata">
 Fetch data
</NavLink>
</div>

Change where it says fetchdata in href to be as follows:

albums

Then you will need to change where it says oi-list-rich in the span to be as follows:

oi-musical-note

Next you will need to change where it says Fetch Data to be as follows:

Albums

Then you can then go to the Menu in Visual Studio Code and select File and then Save All you may see in
the Terminal a message saying Do you want to restart your app - Yes (y) / No (n) / Always (a) / Never
(v)? you can select the Terminal then type y for Yes or a for Always to keep what you have done so far.

Qtutorialr.com 62 c® 0O

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

etutorialr.com

If you return to the Browser you should be where you left off but there will now be an Albums option in
the Menu as shown below:

O @ sty x FE

Blazorfy

A Categores Logout

Playlists

Calming Instrumental Covers

© Coffee Table Jazz

a X%

Logout [mazory |
New Releases

(= YR] [T T

Faith In The Future (Deluxe) More Love, Less Ego Redcar les adorables étoiles Thrill Of The Chase
(prologue)

You can also type in your favourite Album and then select Search to find it. You'll also notice underneath
each Album is a Spotify Code, if you have Spotify on your iPhone or Android device you can use the
option to scan these using the app and can then checkout the Album for yourself.

If you don't see anything then check that you've completed each part correctly and double-check that what
you have is the same, if everything is working then you can proceed to the next part of the Workshop.

Qtutorialr.com 63 c® 0O

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

Qtutorialr.com

Podcasts

We'll add a new Page to Search for Podcasts, to do this return to Visual Studio Code for Blazorfy and
then from Explorer select SpotifyProvider.cs as follows:

DoMos o x

In176,Col 1 Spacesd UTF8 CRIF c¢ & O

You should also still have open the Browser showing the Login option, if you don't then in Visual Studio
Code if it was still open select the Terminal and then press Ctrl+C in Windows or Command+C on Mac
on the Keyboard, or if Visual Studio Code was closed relaunch Visual Studio Code and then select the
New Terminal then in the Terminal. With the Terminal in Visual Studio Code open type the following
which should relaunch the Browser.

dotnet watch

Then in Visual Studio Code within SpotifyProvider.cs you will define part of the Method that will be used to
get New Releases of Albums. In the Method of SearchAync and below the Comment of // Podcasts
type the following:

if (typeof(TItem) == typeof(SimplifiedShow))
{

}

items = content.Shows as Paging<TItem>;

This part of the Method will be used to Search for Podcasts from Spotify when the type is
SimplifiedShow.

Then you can then go to the Menu in Visual Studio Code and select File and then Save All you may see in

the Terminal a message saying Do you want to restart your app - Yes (y) / No (n) / Always (a) / Never
(v)? you can select the Terminal then type y for Yes or a for Always to keep what you have done so far.

Qtutorialr.com 64 c® 0O

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

Qtutorialr.com

Then while still in Visual Studio Code from Explorer select the Folder for Components then with the
Folder for Components selected you should then select the New File... option and type in the name as
follows then press Enter:

PodcastItem.razor

This will form the basis of another Component and will be a blank Component as follows:

0Qmoe o

Ln1,Col1 Sparesd UTF-8 CRIF ASPNETRazor & (3

Qtutorialr.com 65 c® 0O

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

etutorialr.com

Within Podcastltem.razor in Visual Studio Code you can define the Component by typing in the following:

@namespace Blazorfy

<div class="card">
@if (Value.Images.Count > @)
{

}
<Scannable Value="@Value.Uri" />
<div class="card-body">
<h5 class="card-title">
@Value.Name
</h5>
</div>
</div>

@code
{

[Parameter]
public SimplifiedShow Value { get; set; } = new();

The first part of the Component is the namespace for the application which is Blazorfy. Then there is
some HTML to define the layout of the Podcast Item this includes a check to see if there are any Images
with if that if true will then use the img to display the first image since Images is an Array you use the [
and] to provide an Index in this case 0 to get it and we also set the alt of the img to the Name of the
Podcast which is also displayed within a h5 and the Podcast itself will be provided to the Property for
Value.

You'll also see the inclusion of the Component for the Scannable which is provided with the Uri of the
Podcast, within Spotify for Developers a Podcast is called a Show.

Then you can then go to the Menu in Visual Studio Code and select File and then Save All you may see in

the Terminal a message saying Do you want to restart your app - Yes (y) / No (n) / Always (a) / Never
(v)? you can select the Terminal then type y for Yes or a for Always to keep what you have done so far.

@tutorialr.com 66 BIOI®)

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

Qtutorialr.com

Then in Visual Studio Code from Explorer select the Folder for Pages then with the Folder for Pages
selected you should then select the New File... option and type in the name as follows then press Enter:

PodcastsPage.razor

This will form the basis of a Page and will be a blank Page as follows:

Domaos o x

X @0A0 & B Baory In1,Coll Spacesd UTFS CRIF ASPNETRazor &

Qtutorialr.com 67 c® 0O

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

Qtutorialr.com

Within PodcastsPage.razor in Visual Studio Code you can define the entire Page by typing in the following:

@page "/podcasts”

@inject SpotifyProvider _provider;
<LoginItem Value="@ provider.IsLoggedIn" />
@if (_provider.IsLoggedIn)

{
// Items Output

}

@code

{
public List<SimplifiedShow> Items { get; set; } = new();
[Parameter]
[SupplyParameterFromQuery]
public string? Search { get; set; }
// Items Method

}

This Page includes a page directive which create a Route needed to navigate to this Page which will be
used from the Menu later.

There is also an inject to provide the Instance of the SpotifyProvider using Dependency Injection.
Then there is the Component of LoginItem with the Value being provided with the Property for
IsLoggedIn from the class.

There is also the Property for Items to be displayed in the Page along with a Property for the Search that
will be provided, which will be from a query to the page from a Form which is denoted with the Attribute
of SupplyParameterFromQuery.

Qtutorialr.com 68 c® 0O

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

etutorialr.com

While still within PodcastsPage.razor in Visual Studio Code and below the Comment for // Items Method
type the following Method:

protected override async Task OnParametersSetAsync()

{
Items.Clear();
if (await _provider.IsLoggedInAsync())
{
if (Search != null)
{
Items = await _provider.SearchAsync<SimplifiedShow>(Search);
}
}
}

This is a special Method where the implementation of which has been overridden to provide our own
denoted with override in this case it is for OnParametersSetAsync and will populate the List of Items
for the type of SimplifiedShow which represents a Podcast using the Method of SearchAsync and
provide the value to this with type of SimplifiedShow

Finally while still within PodcastsPage.razor in Visual Studio Code and below the Comment for // Items
Output type the following:

<hl>Search @Search</h1>

<form @onsubmit="OnParametersSetAsync">
<input type="text" @bind="Search" @bind:event="oninput" />
<button class="btn btn-primary">Search</button>

</form>

<div class="container">
<div class="row row-cols-1 row-cols-md-4 p-2 g-2">

@foreach (var item in Items)

{
<div class="col">
<PodcastItem Value="@item" />
</div>
}
</div>

</div>

This defines how the Page will look, there is a form to perform a Search this has an input which is where
the Podcast being looked for will be typed in and then there is a button to perform the Search and below
this the Component for the Podcast Item will be used to display the Podcasts.

You can then go to the Menu in Visual Studio Code and select File and then Save All you may see in the

Terminal a message saying Do you want to restart your app - Yes (y) / No (n) / Always (a) / Never (v)?
you can select the Terminal then type y for Yes or a for Always to keep what you have done so far.

Qtutorialr.com 69 BIOI®)

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

Qtutorialr.com

Then in Visual Studio Code from the Explorer for Blazorfy open Shared by selecting the > next to it in
Explorer and select NavMenu.razor as follows:

1
¥ @0A0 & ElBlasordy Ln26,Col 15 Spaces:d UTF-Bwith BOM CRIF ASPNETRazor & O

Then within NavMenu.razor after the </div> of the Albums section in the Menu shown below:

<div class="nav-item px-3">
<NavLink class="nav-link" href="albums">
 Albums
</NavLink>
</div>

You can add Podcasts section to the Menu by typing in the following:

<div class="nav-item px-3">
<NavLink class="nav-1link" href="podcasts">
 Podcasts
</NavLink>
</div>

You can then go to the Menu in Visual Studio Code and select File and then Save All you may see in the
Terminal a message saying Do you want to restart your app - Yes (y) / No (n) / Always (a) / Never (v)?
you can select the Terminal then type y for Yes or a for Always to keep what you have done so far.

Qtutorialr.com 70 c® 0O

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

e

e

tutorialrcom

If you return to the Browser you should be where you left off but there will now be an Podcasts option in
the Menu as shown below:

+ = @ X
t & @
bout
Logout | siazory |
New Releases

(= YR 1] (LT T

Faith In The Future (Deluxe) More Love, Less Ego Redcar les adorables étoiles Thrill Of The Chase
(prologue)

x B - x

a
Abou

t

@
@

Logout [mazory |
Search Scottish Murders

< |The

BRITISH |Doorstep
MURDERS|Murder

A TRUE CRIME PODCAST

S lvlpsfwtall- | & tl|unfAl-hfr § & fneftsafuthnifil:

Scottish Murders British Murders The Doorstep Murder Skinwalker: True Crime
Podcast

g,
””‘m
o kg a
THE ROVAL MILE

OF MURDER <o

Again underneath each Podcast is a Spotify Code, if you have Spotify on your iPhone or Android device
you can use the option to scan these using the app and can then subscribe to the Podcast yourself.

If you don't see anything then check that you've completed each part correctly and double-check that what
you have is the same and then you can Logout and Close the Browser and Visual Studio Code.

tutorialr.com 71 c® 0O

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

e

tutorialrcom

B2 Microsoft | NET why NeT Festures Leam Docs Downloads Community LVETV All Microsoft

Home > ASPNET > WebApps > Blazor

Build beautiful, web
apps with Blazor

Use the power of .NET and C# to build full stack
web apps without writing a line of JavaScript.

Run anywhere Productive Web & Native

Host Blazor components in any web Create beautiful user experiences fast Use Blazor components on the web and in
browser on WebAssembly, server-side in with Blazor's flexible and reusable hybrid native apps for mobile & desktop.
ASP.NET Core, or in native client apps. component model that is simple,

Qtutorialr.com 72

Blazor allows you to build interactive client web applications composed using C#, HTML and CSS that
supports both Client using Web Assembly and Server using ASP.NET created by Microsoft.

Blazor allows you to develop either for Server where events are passed using SignalR to the Client or you
can run your C# code directly on the Client in the Browser using WebAssembly and you can even re-use
code between Server and Client. You can find out more about Blazor including documentation, examples

and more at blazor.net.

©@®O

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/
https://blazor.net/

etutorialr.com
Spotify

Spotify is a music streaming service that allows you to discover and play a variety of Music and Podcasts
from your iPhone or Android or other devices and a Web API for developers with Spotify for Developers.

with playback, personalization,
nuch, much more.

DISCOVER FEATURES

Spotify for Developers allows you to deliver your own experiences powered by a Web API for Albums,
Artists, Shows and their Episodes along with Audiobooks and their Chapters. You can also Search
content, show User information, manage Playlists and get Categories or Genres. You can also control
playback with Player or see what Markets you can get Spotify.

Spotify for Developers uses a normal Spotify account and you can sign up for free and then set up Apps
in the Dashboard to create the Client Id to use the service and as Edit Settings such as Redirect URIs or
add up to 25 Spotify accounts for development, or when ready request an Extension to go public. You can
find out more about Spotify for Developers and the Web API including documentation, examples, online
console and more at developer.spotify.com.

Qtutorialr.com 73 c® 0O

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/
https://developer.spotify.com/

Qtutorialr.com

Summary

Blazor is a powerful platform that allows you to create experiences in your Browser like Blazorfy using
Spotify so you can see what you can do with it and leverage the power of the .NET platform in your
applications, whether you've never written a single line of code until today, or had never heard or used
Blazor, .NET or C# or you just wanted to try something new hopefully you've learned something today and
you can go back over the Workshop and look up many of the concepts, but the best way is to try
something small and grow from there, you can go from Hello World to Blazorfy in a couple of hours,
where would spending more time take you? You'll just have to find out!

Qtutorialr.com 74 c® 0O

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

