

Blazor

https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/
https://twitter.com/tutorialrdotcom
https://www.tutorialr.com/
https://www.tutorialr.com/workshops/
https://www.buymeacoffee.com/tutorialrdotcom

1

Contents

Contents
Introduction.. 2

What is Blazor? ... 2

What is Visual Studio Code? ... 3

Setup and Start ... 4

Blazor.. 4

Visual Studio Code .. 7

Components .. 12

Routing ... 12

Markup ... 14

Styles and CSS ... 15

Images .. 16

Binding and Events ... 17

Binding ... 17

Events .. 18

Conditions and Collections ... 23

Forms ... 26

Dependency Injection .. 28

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

2

Introduction

What is Blazor?
Blazor allows you to build interactive client web applications using C# instead of JavaScript with

Applications composed using reusable Components using C#, HTML and CSS that supports both Client

using Web Assembly and Server using ASP.NET created by Microsoft.

Blazor uses C#, which supports many features common in modern programming languages. C# is used

with .NET, which not only supports developing Applications in Blazor but you can also use C# to develop

Applications for web, mobile, desktop, games, IoT and more. For more information about using .NET along

with documentation, examples and more then visit dot.net.

Blazor allows you to develop Applications that run on the Server where events are passed using SignalR,

you can run your C# code directly in the Browser using WebAssembly and can re-use code between the

Client and Server. Blazor also enables Native cross-platform Applications using Blazor Hybrid with .NET

MAUI. and you can still work with JavaScript in the Browser from Blazor when needed. You can find out

more about Blazor including documentation, examples and more at blazor.net.

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/
https://dot.net/
https://blazor.net/

3

What is Visual Studio Code?
Visual Studio Code will help create Blazor applications even more easily. Visual Studio Code is a free

Integrated Development Environment or IDE created by Microsoft.

Visual Studio Code supports syntax highlighting which will add colours to certain parts of the text and

make it easy to make sure everything is being entered correctly when writing Blazor Applications. You can

use Visual Studio Code to edit any other C#, Razor, CSS, HTML and more, making more than just creating

Blazor applications straightforward. If you want to find out more about Visual Studio Code along with

documentation, extensions and more you can visit code.visualstudio.com.

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/
https://code.visualstudio.com/

4

Setup and Start

Blazor
Blazor requires the latest version of the .NET SDK which if you have it already you can Download the

version for your Platform such as Windows from dot.net

Once you have Downloaded then Install the .NET SDK by following the steps in the Installation Wizard

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/
https://dot.net/

5

Once the .NET SDK has been Installed, or if it was already Installed, then if using Windows you need to

go to Start then search for Command Prompt and then select it.

Once in the Command Prompt you will need to create a new Folder, you can use mkdir followed by the

name of the Folder e.g. Blazor and then press Enter.

Then you will need to switch to this Folder, to do this from the Command Prompt, type in the following

command and then press Enter:

Once in this Folder you can create a new Blazor Application using the .NET CLI that was installed as part of

the .NET SDK. To do this, while still in the Command Prompt type in the following command and then

press Enter:

This will create a new Blazor for WebAssembly or wasm Application, once done in the Command Prompt

you will need to change to the Folder for the Workshop by typing in the following and then press Enter:

Once done, while still in the Command Prompt type in the following command and then press Enter.

This will Build and Start the Application and display it in your Browser

mkdir Blazor

cd Blazor

dotnet new blazorwasm -o workshop

cd workshop

dotnet watch

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

6

Keep the Command Prompt and Browser open during the Workshop but can Close it if finished. If

Closed and you need to continue the Workshop, just go to Start then find Command Prompt then go to

the Folder for the Workshop e.g. C:\Blazor\workshop and to then Build and Start the Application by

typing the following commands, after each press Enter:

Should you need to, you can get information, documentation and more about Blazor at blazor.net

This Workshop supports at least .NET 6 and C# 10 throughout for Blazor.

cd C:\Blazor\workshop

dotnet watch

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/
https://blazor.net/

7

Visual Studio Code
To be able to Edit your Application you will need to Download, if you don’t have it already, Visual Studio

Code for your Platform such as Windows from code.visualstudio.com.

Once Downloaded, you can then Install it by following the steps in the Installation Wizard

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/
https://code.visualstudio.com/

8

Once Visual Studio Code has been Installed, or if it was already Installed, then if using Windows you

need to go to Start then search for Visual Studio Code and then select it.

Once Visual Studio Code has opened from the Menu choose File then Open Folder... then select the

Folder for your Application e.g. C:\Blazor\workshop. Then once the Folder has been opened Select the Yes,

I trust the authors option in the Do you trust the authors of the files in this folder? if this is displayed.

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

9

Within Visual Studio Code is Explorer, expand the Folder for wwwroot and then css to find app.css, this

defines CSS styles for the Application, then at the bottom of app.css, type in the following Comment:

Also in Visual Studio Code within the Explorer you can Expand the Folder for Pages to find the main

Component for the Application which is Index.razor, this is where you will be spending most of your time in

the Workshop, you need to clear the contents of this file so that it is Blank, like as follows:

Then while still in the Component of Index.razor in Visual Studio Code type in the following:

/* CSS */

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

10

Then in Visual Studio Code from the Menu select File then Save to save these Changes to Index.razor.

You should always do this when you make any Changes to Index.razor and other files.

Switch over to the Command Prompt that should be still open for dotnet watch and there should be the

following message, Do you want to restart your app - Yes (y) / No (n) / Always (a) / Never (v)? Press a

to select the Always Option and should you Close the Workshop then you will need to do this again in the

Command Prompt after getting everything running again and making your first Changes after doing so.

Then back in Visual Studio Code for the Component for the Application of Index.razor when you need to

use an @inject in the Component for the Application of Index.razor then these should be placed below

the Comment using the Razor Syntax @* and *@ of @* Injects *@ when needed in the Workshop.

To add or declare a Variable in the Component for the Application of Index.razor these should be placed

on their own line within the Block for @code below the Comment using the C# Syntax // of // Variables

or placed on their own line below any previously declared Variable.

To add a Method in the Component for the Application of Index.razor such as a Function that has a

return for a Value or one that is void and performs some functionality without Returning a Value, both

will contain { for the start of the Body of the Method and } for the end of the Body of the Method, then

these should be placed the Block for @code below the C# Syntax Comment of // Methods or placed

below the end of the Body of the Method of any previously declared Methods.

Finally anything else to be added using a combination of HTML and Razor Syntax in the Component for

the Application of Index.razor then this should be typed in below the Razor Syntax Comment of @*

Application *@ or below any previously entered HTML and Razor.

You can use the same Blazor Application throughout the Workshop and you don’t need to remove

anything else.

@page "/"
@* Injects *@

@code
{
 // Variables

 // Methods

}

@* Application *@

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

11

Components
Components make up Blazor Applications using Razor Components also known as Blazor Components.

Components are self-contained, they define part of a User Interface and with Logic to define and enable

Dynamic Behaviour. Components are a combination of C#, HTML and Razor Syntax.

Follow Setup and Start and you should have the Command Prompt for dotnet watch open, your

Browser should also be open and you should also have Visual Studio Code open with the Folder for the

Workshop open e.g. C:\Blazor\workshop.

Then in Visual Studio Code select within Explorer in the Folder of Pages the Component for the

Application of Index.razor and below the Comment of // Variables type in the following Variable:

This Variable is a string which contains some text, in this case Hello World when using a string it

needs to be surrounded by a pair of double quotes " and ". Then to use this Variable within a H1 Tag in

HTML, you can do so by putting @ in front of the Variable by typing below the Comment of @*

Application *@ the following:

Then in Visual Studio Code from the Menu select File then Save to save these Changes to Index.razor.

Then switch to the Browser that was opened with dotnet watch from the Command Prompt and you

should see the text Hello World displayed in a h1 Tag.

Routing

Routing in Blazor allows you to provide a Route to a Component using the Directive of @page allowing

the Component to be accessed using a Relative URL or Website Address in the Browser.

Return to Visual Studio Code and from the Explorer you need to Right-Click on the Folder for Pages and

select the New File option then type in the following and then press Enter:

Message.razor will form the basis of a new Component so while still in Message.razor type in the following:

Then in Visual Studio Code from the Menu select File then Save to save these Changes to Message.razor.

string message = "Hello World";

<h1>@message</h1>

Message.razor

@page "/message/{Value}"
<h2>@Value</h2>
@code
{
 [Parameter]
 public string Value { get; set; } = string.Empty;
}

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

12

This Component for Message uses the Directive of @page with /message/{Value}, which will allow the

Component to be accessed using a Relative URL or Website Address in the Browser along with being able

to specify the Value. Then there a h2 Tag being used to display a Property of Value. This Property is C#

Syntax allowing the Value which is a string to be Read, denoted with get and to be Written, denoted with

set. This Property is assigned to, using = to the string.Empty which would be "" and this Property is

also used with the Attribute of Parameter which indicates that this Property can be set from another

Component.

To use this Component, from Visual Studio Code within Explorer from the Folder of Pages select the

Index.razor, then in the section with the Comment of @* Application *@ and below <h1>@message</h1>

type in the following:

Then in Visual Studio Code from the Menu select File then Save to save these Changes to Index.razor.

Then switch to the Browser that was opened with dotnet watch from the Command Prompt and you

should see the text Hello Again! displayed in a h2 Tag, then while still in the Browser in the Address Bar

type the following Relative URL after whatever is there e.g. https://localhost:7095 (your number may

be different):

In the Browser the Address Bar will be something like https://localhost:7095/message/Hello! and

you should see the Text Hello! displayed in the Browser you can also change the Hello! passed in to

anything you like. When done use the Home option from list of options shown below Workshop to return

to the Page showing Hello World and Hello Again!

<Message Value="Hello Again!"/>

/message/Hello!

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

13

Markup
Components can also be created to output specific Markup using C#, HTML and Razor Syntax. Return to

Visual Studio Code and from the Explorer you need to Right-Click on the Folder for Pages and select the

New File option then type in the following and then press Enter:

Date.razor will form the basis of a new Component so while still in Date.razor type in the following:

This Component for Date is being used to display a Property of Value in a h3 Tag using Method of

ToString("MMMM dd, yyyy") to Format the Output with MMMM for the Month, dd for the Day and yyyy

for the Year, these are Date Format Strings. This Property is C# Syntax allowing the Value which is a

DateOnly to be Read, denoted with get and to be Written, denoted with set. This Property is also used

with the Attribute of Parameter which indicates that this Property can be set from another Component.

To use this Component, from Visual Studio Code within Explorer from the Folder of Pages select

Index.razor and below the Comment of // Variables and after any previously declared Variable, type in

the following Variable:

DateOnly is a Type in C# that only stores a Date and can use Method the Parse to get this from a string

representation of a Date such as "23-June-1912". While still in the Component for the Application of

Index.razor in the section with the Comment of @* Application *@ below <Message Value="Hello

Again!"/> type in the following:

While still in Visual Studio Code from the Menu select File then Save to save these Changes to Index.razor.

If you switch to the Browser is open for the Workshop, you will see the Component for Date being

displayed as June 23, 1912, which is Alan Turing’s birthday, a pioneer in the field of computing!

Date.razor

<h3>@Value.ToString("MMMM dd, yyyy")</h3>
@code
{
 [Parameter]
 public DateOnly Value { get; set; }
}

DateOnly dateOfBirth = DateOnly.Parse("23-June-1912");

<Date Value="dateOfBirth"/>

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

14

Styles and CSS
Components can also allow a Value to be used to define the CSS Style of a Tag of HTML. In Visual Studio

Code within Explorer from the Folder of Pages select the Index.razor and below the Comment of //

Variables and after any previously declared Variables, type in the following Variable:

To use the string as CSS Style, while still in the Component for the Application of Index.razor type in

below <Date Value="dateOfBirth"/> the following:

Then in Visual Studio Code from the Menu select File then Save to save these Changes to Index.razor.

Then switch over to the Browser that was opened with dotnet watch you will see the Text of Highlighted

with a Background Colour of yellow.

Then, back in Visual Studio Code from Explorer in the Folder of wwwroot and css select app.css and

define some CSS for the Application by typing in below the Comment of /* CSS */ the following:

Then in Visual Studio Code from the Menu select File then Save to save these Changes for app.css. Return

to the Component for the Application within the Folder for Pages of Index.razor and below the Comment

of // Variables and after any previously declared Variables, type in the following Variable:

The square-brackets of [and] denote an Array which is a set of Elements of a given Type in this case

they are a string with the Values of inverted and large. While still in the Component of Index.razor and

below <div>Highlighted</div> type in the following:

This will set the class for the span using the Variable of contrast since CSS needs to be defined with

Spaces inbetween the Method for string.Join will be used to combine the Values from the Array with a

Space, denoted with " ". If you switch over to the Browser that was opened with dotnet watch from the

Command Prompt it will have the Text of Contrast in white with a black Background.

string styling = "background-color: yellow";

<div>Highlighted</div>

.inverted {
 color: white;
 background-color: black;
}

.large {
 font-size: 2.0em;
}

string[] contrast = { "inverted", "large" };

<div>Contrast</div>

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

15

Images
Components can contain any other HTML Elements such as an Image using the img Tag and can set the

src from anything, including a Method, to do this, in Visual Studio Code in the Component for the

Application of Index.razor within the Folder of Pages type below the Comment for // Methods the

following Method:

This Method of GetImage() will return a Uri, to use this, while still in the Component for the Application

of Index.razor below <div>Contrast</div>

in the section with the Comment of @* Application *@, type in the following:

This will set the src the img Tag using the Result from the Method of GetImage(). Back in the Browser,

you should see a Grinning Face displayed, image courtesy of openmoji.org.

Uri GetImage()
{
 return new("https://openmoji.org/data/color/svg/1F600.svg");
}

<div>

</div>

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/
https://openmoji.org/

16

Binding and Events

Binding

Binding in Blazor can be used in Components to allow for Data Binding Elements using the Directive of

@bind with Values such as a Field or Variable, Property or an Expression.

After following Setup and Start and Components you should have the Command Prompt for dotnet

watch open, your Browser should also be open and you should also have Visual Studio Code open with

the Folder for the Workshop open e.g. C:\Blazor\workshop.

In Visual Studio Code select the Component for the Application, Index.razor found within Explorer in the

Folder of Pages below the Comment of // Variables and after any previously declared Variables, type

in the following Variable:

Then while still in Visual Studio Code for the Component for the Application of Index.razor, within the

section containing the Comment of @* Application *@ below the final </div> type in the following:

This will use the Directive for @bind to Bind to the Field or Variable of text that was declared, and using

the bind:event will update text when the input is typed into as this will trigger the Event for oninput of

the input and underneath the Value of input will be displayed in a h2 Tag.

Then Visual Studio Code from the Menu select File then Save to save the Changes to Index.razor.

Switch to the Browser opened with dotnet watch from the Command Prompt you will see an input,

which when Typed into will have the same contents displayed underneath in a h2 Tag.

string text = string.Empty;

<div>
 <input type="text" @bind="text" @bind:event="oninput" />
 <h2>@text</h2>
</div>

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

17

Events
Events in Blazor can be used in Components to create more Dynamic Behaviour in a Blazor Application.

In Visual Studio Code select the Component for the Application, Index.razor found within Explorer in the

Folder of Pages type below the Comment of @* Injects *@ type in the following:

This will use inject to include IJSRuntime which is an Interface exposing functionality from JavaScript to

allow the Blazor application to Invoke features from JavaScript. Then below the Comment for //

Methods and after the Body of any previous Methods type the following Methods:

The first Method is used to Invoke a feature from JavaScript, in this case for alert which is used to

display an alert Message in a Browser. This Method uses async and await which means it will perform a

Task that won’t happen at the same time as anything else, or Asynchronously denoted with async and

when this is completed it will come back after this Task has completed which is denoted with await. The

second Method will Call the Method for Alert with the string of Hello World.

While still in the Component of Index.razor in the section with the Comment of @* Application *@

below the final </div> type in the following:

Then you can select the Browser opened with dotnet watch from the Command Prompt you will see a

button labelled Show Message which when Clicked will display an alert displaying the Message of Hello

World.

@inject IJSRuntime runtime;

async void Alert(string message)
{
 await runtime.InvokeVoidAsync("alert", message);
}

void ShowMessage()
{
 Alert("Hello World");
}

<div>
 <button class="btn btn-primary" @onclick="ShowMessage">
 Show Message
 </button>
</div>

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

18

You can also use Events to perform other Dynamic Behaviour such as changing the Style of an Element.

Return to Visual Sudio Code and select the Component for the Application, Index.razor found within

Explorer in the Folder of Pages then below the Comment of // Variables and after any previously

declared Variables, type in the following Variables:

The first Variable is a string for the Style and the second Variable is a bool which is a Value that can be

either true or false. Then below the Comment for // Methods and after the Body of any previous

Methods type the following Method:

This Method will first set isSelected to isSelected with the ! or the Operator for Not, this works with a

bool by changing anything that was true to be false and anything that was false to be true. Then

style is set with a string using String Interpolation which is denoted with the use of $ at the start. There

is an Expression contained within the brackes of (and) which uses the Conditional Operators of ? and :.

Should the Value of isSelected be true then "bold" will be Returned from the Conditional or when

isSelected false then "normal" will be Returned from the Conditional.

Then, while still in the Component of Index.razor in the section with the Comment of @* Application *@

and below the final </div> type in the following:

Then Visual Studio Code from the Menu select File then Save to save the Changes to Index.razor and then

go to the Browser that was opened with dotnet watch and Click the Link with the Text of Toggle Style

and this Text will switch between being bold or normal when Clicked.

string style = string.Empty;
bool isSelected = false;

void SetStyle()
{
 isSelected = !isSelected;
 style = $"font-weight:{(isSelected ? "bold" : "normal")}";
}

<div>
 Toggle Style
</div>

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

19

It is possible to combine Binding with Events. Return to Visual Sudio Code then select the Component for

the Application, Index.razor found within Explorer in the Folder of Pages and below the Comment of //

Variables and after any previously declared Variables, type in the following Variable:

While still in the Component of Index.razor in the section with the Comment of @* Application *@

below the final </div> type in the following:

This will use @bind to Bind the input to the Variable of value, then the button will use the Event of

@onclick to Call the Method of Alert with value.

In Visual Studio Code from the Menu select File then Save to save the Changes to Index.razor and then

you can select the Browser opened with dotnet watch and you should see an input with a button

labelled Show, anything you type in the input will be displayed in an alert when the button of Show is

Clicked.

string value = string.Empty;

<div>
 <input type="text" @bind="value" />
 <button class="btn btn-primary" type="button"
 @onclick="@(e => Alert(value))">
 Show
 </button>
</div>

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

20

You can define Events in a Component. In Visual Studio Code and then from Explorer you need to Right-

Click on the Folder for Pages and select New File then type in the following and then press Enter.

This will form the basis of a new Component, within the Component of Sizer.razor type in the following:

Starting with the Block for @code there is a Parameter for the Component of Size which is an int which

represents a whole number such as 20, there is also another Parameter for the Compoonent for an

EventCallback, this uses the Generic Syntax denoted by the angled-brackets or chevrons of < and > and

in this case this is the Type of int which will be used for the latest value of Size. Both of these use the

Keyword in C# for public, this means they are accessible outside of the Component.

Then there are Methods, marked with private which indicates they should only be used or be accessible

from within the Component, starting with Resize which is marked async which means it will perform a

Task that won’t happen at the same time as anything else or Asynchronously. The Method performs a

Calculation using the delta value passed in as a Parameter for the Method, once the Calculation is done,

then the Method for InvokeAsync is invoked which will be used to get the latest Value to use. The last two

Methods invoke Resize and either pass in -1 or +1 accordingly.

Then above the Block for @code there is a button when Clicked or @onclick will either Decrease with - or

Increase with + and then there is a span which will display the Value of Size and use this with the Style of

font-size with it too.

Sizer.razor

<div>
 <button class="btn btn-primary"
 @onclick="Decrease" title="Decrease">-</button>
 <button class="btn btn-primary"
 @onclick="Increase" title="Increase">+</button>
 Font Size: @Size<text>px</text>
</div>
@code
{

 [Parameter]
 public int Size { get; set; }

 [Parameter]
 public EventCallback<int> SizeChanged { get; set; }

 private async void Resize(int delta)
 {
 Size = Math.Min(40, Math.Max(8, + this.Size + delta));
 await SizeChanged.InvokeAsync(Size);
 }

 private void Decrease() =>
 Resize(-1);

 private void Increase() =>
 Resize(+1);
}

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

21

To use this Component, from Visual Studio Code within Explorer from the Folder of Pages select

Index.razor, then below the Comment of // Variables and after any previously declared Variables, type

in the following Variable:

This Variable is an int and has been set to 20 for the initial Value of size. While still in Index.razor, in the

section with the Comment of @* Application *@ below the final </div>, type in the following:

This will include the Component of Sizer and then will set the Value for Size with the Variable of size,

along with creating an Expression to use with SizeChanged which will update the Variable of size and

there is also a div where the Style for the font-size will be used too.

Then Visual Studio Code from the Menu select File then Save to save the Changes to Index.razor.

Then when you switch over to the Browser you can use the Sizer to change the font-size of itself and the

div contained the Text of Resizable Text too.

int size = 20;

<div>
 <Sizer Size="@size" SizeChanged="(int value) => size = value" />
 <div style="font-size:@(size)px">Resizable Text</div>
</div>

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

22

Conditions and Collections

Conditions can be used in Blazor to control what is being displayed to add even more Dynamic

Behaviour to an Application.

After following Setup and Start, Components and Binding and Events. Then you should have the

Command Prompt for dotnet watch open, your Browser should also be open and you should also have

Visual Studio Code open with the Folder for the Workshop open e.g. C:\Blazor\workshop.

In Visual Studio Code select the Component for the Application, Index.razor found within Explorer in the

Folder of Pages below the Comment of // Variables and after any previously declared Variables, type

in the following Variable for a bool:

Then in Visual Studio Code for Index.razor, below the Comment for // Methods and after the Body of

any previous Methods type the following Method:

The Method of Toggle() will set isShown to isShown with the ! or the Operator for Not, this works with

a bool by changing anything that was true to be false and anything that was false to be true.

Then while still in Index.razor, in the section with the Comment of @* Application *@ below the final

</div>, type in the following:

This contains a button that when Clicked or @onclick will invoke the Method for Toggle which updates

isShown. Below this is a Conditional Statement of if which the contents of which, containing a h2 Tag

with the Text of Hello World! but this will only be displayed when isShown is true.

If you switch to the Browser that was opened with dotnet watch from the Command Prompt, you will

see the button with the Text of Click Here, which when Clicked will either display underneath the Text of

Hello World! in a h2 Tag or hide it when Clicked if it is already there.

bool isShown = false;

void Toggle()
{
 this.isShown = !this.isShown;
}

<div>
 <button class="btn btn-primary"
 @onclick="Toggle">Click Here</button>
 @if (isShown)
 {
 <h2>Hello World!</h2>
 }
</div>

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

23

Components can also display the contents of a Collection. Return to Visual Sudio Code and select the

Component for the Application, Index.razor found within Explorer in the Folder of Pages then below the

Comment of // Variables and after any previously declared Variables, type in the following Variable:

The Collection used here is a List which uses the Generic Syntax denoted by the angled-brackets or

chevrons of < and > and in this case this List is has Elements with a Type of string with the Values being

the string of "Hello" and "World".

While still in the Component for the Application of Index.razor, in the section with the Comment of @*

Application *@ and below the final </div>, type in the following:

Within this is a ul for an Unordered List or Bulleted List then uses foreach to go through each Value in

the Collection as a string and output them using a li or List Item.

In Visual Studio Code from the Menu select File then Save to save the Changes to Index.razor, then switch

over to the Browser that was opened, there will be a Bulleted List showing the List Items of Hello and

World.

You can combine Conditions and Collections using a switch to display values from a Variable. Return to

Visual Sudio Code and select the Component for the Application, Index.razor found within Explorer in the

Folder of Pages then below the Comment of // Variables and after any previously declared Variables,

type in the following Variable:

The Collection used here is a Dictionary which also uses the Generic Syntax denoted by the angled-

brackets or chevrons of < and > and in this case this Dictionary is has Elements with the Key and the

Value the Type of string and has some Values set.

List<string> items = new()
{
 "Hello",
 "World"
};

<div>

 @foreach (string item in items)
 {
 @item
 }

</div>

Dictionary<string, string> values = new()
{
 { "None", "" },
 { "Danger", "red" },
 { "Warning", "yellow" },
 { "Proceed", "green" }
};

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

24

While still in the Component for the Application of Index.razor, in the section with the Comment of @*

Application *@ and below the final </div>, type in the following:

Within this is a ul for an Unordered List or Bulleted List then uses foreach to go through each Value in

the Collection as a var which means the Type can be Inferred rather than Explicitly stated. Then there is a

switch which will use the Key from the Dictionary of Values and output using a li or List Item for a

given case of the Key with default being used for any other Value.

In Visual Studio Code from the Menu select File then Save to save the Changes to Index.razor. Then if you

switch over to the Browser there will be another Bulleted List showing the List Items of None, then Danger

with a red Background, Warning with a yellow Background and Proceed with a green Background.

<div>

 @foreach (var value in values)
 {

 @switch (value.Key)
 {
 case "Danger":

 Danger

 break;
 case "Warning":

 Warning

 break;
 case "Proceed":

 Proceed

 break;
 default:

 None

 break;
 }

 }

</div>

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

25

Forms

Forms in Blazor take advantage of built-in Components for Input and you can Bind to a Model using

Data Annotations that allow you to Validate any Input from Forms.

Follow Setup and Start, Components, Binding and Events and Conditions and Collections. You should

then have the Command Prompt for dotnet watch open, your Browser should also be open and you

should also have Visual Studio Code open with the Folder for the Workshop open

e.g. C:\Blazor\workshop.

In Visual Studio Code from the Menu select File and then New Text File then select File again and this

time choose the Save option, select the Folder for the Workshop e.g. C:\Blazor\workshop, then set the

Filename to the following:

Then either press Enter or select Save once done, in Visual Studio Code from the Explorer within the

Workshop select Model.cs and then type in the following:

Then in Visual Studio Code from the Menu select File then Save to save the Changes for Model.cs, which is

a class which in C# is a pattern of a particular object. In this case it will be for Name which is a Property

with the Type of a string? the ? denotes that this Property can be null which is a special Value that

means it has no value. The Property also has an Attribute that is part of the Data Annotations which is

brought in with using of System.ComponentModel.DataAnnotations to denote that this Property is

Required so it must have a Value when used with the Form.

Then in Visual Studio Code in the Explorer within the Folder of Pages in the Component for the

Application of Index.razor below the Comment of // Variables and after any previously declared

Variables type in the following Variable:

This will create an Instance of the Class for the Model so it can be used in the Form.

Model.cs

using System.ComponentModel.DataAnnotations;

public class Model
{
 [Required]
 public string? Name { get; set; }
}

Model model = new();

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

26

While still in Visual Studio Code for Index.razor, below the Comment for // Methods and after the Body

of any previous Methods type the following Method:

This Method will use the Method for Alert to display a message containing the Value of Name from the

Instance of Class for Model of model. This also features the ?? or Null-coalescing Operator which when

the value is null it will use Value for string.Empty or "" instead.

Then while still in Visual Studio Code in the Component for the Application of Index.razor, in the section

with the Comment of @* Application *@ and below the final </div>, type in the following:

This uses the built-in Component of EditForm with the Model set to the Instance of model for the Class it

uses the Method of HandleValidSubmit when the Form is Valid, this is based on the

DataAnnotationsValidator which will check if the Property of Name is not null and has a Value. The

Component of InputText and is Bound to the Property from the Model of Name. If there is no Valid input

then any issues will be displayed using the ValidationSummary then finally there is the button with the

type of submit to process the Form with the Text of Submit.

In Visual Studio Code from the Menu select File then Save to save the Changes to Index.razor. Then, when

you switch to the Browser that was opened with dotnet watch from the Command Prompt, there will be

an input next to the button with the Text of Submit if you type in anything then Click on Submit then it

will display an alert with what was typed in, if nothing is entered then it will state that The Name field is

required. along with showing the input in red.

void HandleValidSubmit()
{
 Alert(model.Name ?? string.Empty);
}

<div>
 <EditForm Model="@model" OnValidSubmit="@HandleValidSubmit">
 <DataAnnotationsValidator />
 <label>
 Name
 <InputText id="name" @bind-Value="model.Name" />
 </label>
 <ValidationSummary />
 <button class="btn btn-primary" type="submit">Submit</button>
 </EditForm>
</div>

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

27

Dependency Injection

Dependency Injection in Blazor allows Services to be Injected into an Application, these Services can be

either Framework-registered or Custom. Dependency Injection is a software design pattern allowing

functionality to be provided to a given part of an Application to achieve Inversion of Control where

Implementation is written to depend on or Implement higher-level abstractions to allow for more

modular and maintainable code.

Follow Setup and Start, Components, Binding and Events, Conditions and Collections and Forms. You

should then have the Command Prompt for dotnet watch open, your Browser should also be open and

you should also have Visual Studio Code open with the Folder for the Workshop open

e.g. C:\Blazor\workshop.

In Visual Studio Code from the Menu select File and then New Text File then select File again and this

time choose the Save option, select the Folder for the Workshop e.g. C:\Blazor\workshop, then set the

Filename to the following:

Then either press Enter or select Save once done, in Visual Studio Code from the Explorer within the

Workshop select DemoService.cs and then type in the following class:

This class represents a simple Service that has a single Method of GetMessage() which will return the

string of "Hello Demo!".

Then in Visual Studio Code from the Explorer for Workshop you should find program.cs. In this, below the

line of builder.Services.AddScoped(sp => new HttpClient { BaseAddress = new

Uri(builder.HostEnvironment.BaseAddress) }); type in the following:

This line will Register the Service with the Application. Then in Visual Studio Code from the Menu select

File then Save to save the Changes to program.cs.

DemoService.cs

public class DemoService
{
 public string GetMessage()
 {
 return "Hello Demo!";
 }
}

builder.Services.AddScoped(sp => new DemoService());

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

28

Then while still in Visual Studio Code select the Component for the Application, Index.razor found within

Explorer in the Folder of Pages and type below the Comment of @* Injects *@ and after any previous

@inject type in the following:

Then while still in the Component for the Application of Index.razor, within the section with the Comment

of @* Application *@ and below the final </div>, type in the following:

This will get the Value for a h2 Tag using the Method of GetMessage from the Service that was Injected

using Dependency Injection.

Then switch to the Browser that was opened with dotnet watch from the Command Prompt and you

should see the text Hello Demo! displayed in a h2 Tag and that concludes this Workshop about Blazor

from tutorialr.com!

@inject DemoService service;

<h2>@service.GetMessage()</h2>

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/
https://tutorialr.com/

