€ tutorialrcom

Qworkshop

Blazor

Gy

?tutorialr.com

https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/
https://twitter.com/tutorialrdotcom
https://www.tutorialr.com/
https://www.tutorialr.com/workshops/
https://www.buymeacoffee.com/tutorialrdotcom

Qtutorialr.com

Contents

Contents

INEFOTUCTION. ..ottt bbb bbbt 2
WHAE IS BIAZOT? ..ottt bbb bbb bbb bbbt 2
WHhat is ViSUGl STUAIO COURY ...ttt bbb 3

SEEUP @NA STAI ..ottt st s e s sttt 4
BlaAZOT ettt RS £Rf RS8R AR 4
ViISUBI STUAIO COUE.....ouiiriiiiciciirecieiecise et bbb bbb 7

COMPONENTS. ...ttt a s s s s a eS8 e s e s s bbb s s as b s s st nesneansnssenens 12
ROUTING oottt sk a bbb nes s 12
IVMAIKUP oottt s8R 8 A et 14
SEYIES @NA CSS oottt bbb 15
[IMI@GIES .otttk A Rk R bbb 16

BINAING @GN0 EVENTS ...ttt bbbt 17
BINGAING ottt 17
EVBINTES et e b 18

CONAItIONS AN COIECLIONSouieeeiies ettt st 23

FOIIMNIS ot bbb 26

DEPENAENCY INJECION ...ttt st s bbb s et n s 28

Qtutorialr.com 1 c® 0O

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

etutorialr.com

Introduction
What is Blazor?

Blazor allows you to build interactive client web applications using C# instead of JavaScript with
Applications composed using reusable Components using C#, HTML and CSS that supports both Client
using Web Assembly and Server using ASP.NET created by Microsoft.

B Microsoft | NET wnyner Features Leam Docs Downloads Community UVETV All Microsoft

Home > ASPNET > WebApps > Blazor

Blazor

Build client web apps with C#

To learn more, visit the Blazor documentation.

<h1>Counter</hl1> . .
<h3>Current count: geurrentCount</h3> | Counter Interactive web Ul with C#
<button class="btn btn-primary" »| Current count: 0 Blazor lets you build interactive web Uls using C# instead of
@onclick="IncrementCount"> 1 - JavaScript. Blazor apps are composed of reusable web Ul
Click me components implemented using C#, HTML, and CSS. Both client
</button> and server code is written in C#, allowing you to share code and
libraries.
< @code {
pr :“:' ‘":d“x‘"‘""c":g* ’(‘(’; Blazor is a feature of ASP.NET, the popular web development
;(:r - TEESm— framework that extends the NET developer platform with tools
currentCounts+; and libraries for building web apps.
}

Blazor uses C#, which supports many features common in modern programming languages. C# is used
with .NET, which not only supports developing Applications in Blazor but you can also use C# to develop
Applications for web, mobile, desktop, games, loT and more. For more information about using .NET along
with documentation, examples and more then visit dot.net.

Blazor allows you to develop Applications that run on the Server where events are passed using SignalR,
you can run your C# code directly in the Browser using WebAssembly and can re-use code between the
Client and Server. Blazor also enables Native cross-platform Applications using Blazor Hybrid with .NET
MAUI. and you can still work with JavaScript in the Browser from Blazor when needed. You can find out
more about Blazor including documentation, examples and more at blazor.net.

Qtutorialr.com 2 c® 0O

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/
https://dot.net/
https://blazor.net/

Qtutorialr.com

What is Visual Studio Code?

Visual Studio Code will help create Blazor applications even more easily. Visual Studio Code is a free
Integrated Development Environment or IDE created by Microsoft.

Visual Studio Code

Editing evolved

Visual Studio Code supports syntax highlighting which will add colours to certain parts of the text and
make it easy to make sure everything is being entered correctly when writing Blazor Applications. You can
use Visual Studio Code to edit any other C#, Razor, CSS, HTML and more, making more than just creating

Blazor applications straightforward. If you want to find out more about Visual Studio Code along with
documentation, extensions and more you can visit code.visualstudio.com.

Qtutorialr.com 3 c® 0O

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/
https://code.visualstudio.com/

€ tutorialrcom

Setup and Start
Blazor

Blazor requires the latest version of the .NET SDK which if you have it already you can Download the
version for your Platform such as Windows from dot.net

B® Microsoft | .NET wnynero fetures

Learn Docs Downloads Community UVETV

Free. Cross-platform. Open source.
A developer platform for building all
your apps.

Supported on Windows, Linux, and macOS

Build apps for

Build native apps for Android, iOS,

macOS and ws from

Build interactive web and hybrid native
gle apps using HTML, CSS and C# with

codebase with .NET Multi-platform App Blazor.

Al Microsoft

Feedback

Once you have Downloaded then Install the .NET SDK by following the steps in the Installation Wizard

ﬁ Microsoft NET SDK 6.0,400 (x64) Installer —

Microsoft .NET SDK 6.0.400

NET SDK

The .MET 5DK is used to build, run, and test .MET applications. You can choose from
multiple languages, editors, and developer tools, and take advantage of a large

ecosystemn of libraries to build apps for web, mobile, desktop, gaming, and loT. We
hope you enjoy it!

If you plan to use .MET 6.0 with Visual Studie, Visual Studio 2022 17.0 or newer is
required. Learn maore.

By clicking Install, you agree to the following terms:

Privacy Statement

Telemetry collection and opt-out

Licensing Information for .MET

'ylnstall Close

Qtutorialr.com

©@®O

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/
https://dot.net/

Qtutorialr.com

Once the .NET SDK has been Installed, or if it was already Installed, then if using Windows you need to
go to Start then search for Command Prompt and then select it.

BN Command Prompt — [m} X

Once in the Command Prompt you will need to create a new Folder, you can use mkdir followed by the
name of the Folder e.g. Blazor and then press Enter.

mkdir Blazor

Then you will need to switch to this Folder, to do this from the Command Prompt, type in the following
command and then press Enter:

cd Blazor

Once in this Folder you can create a new Blazor Application using the .NET CLI that was installed as part of
the .NET SDK. To do this, while still in the Command Prompt type in the following command and then
press Enter:

dotnet new blazorwasm -o workshop

This will create a new Blazor for WebAssembly or wasm Application, once done in the Command Prompt
you will need to change to the Folder for the Workshop by typing in the following and then press Enter:

cd workshop

Once done, while still in the Command Prompt type in the following command and then press Enter.

dotnet watch

This will Build and Start the Application and display it in your Browser

etutorialr.com 5 c® 0O

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

etutorialr.com

workshop About

A Home He”o, WOF'd!

Welcome to your new app.

#' How is Blazor working for you? Please take our brief survey and tell us what you think

Keep the Command Prompt and Browser open during the Workshop but can Close it if finished. If
Closed and you need to continue the Workshop, just go to Start then find Command Prompt then go to
the Folder for the Workshop e.g. C:\Blazor\workshop and to then Build and Start the Application by
typing the following commands, after each press Enter:

cd C:\Blazor\workshop
dotnet watch

Should you need to, you can get information, documentation and more about Blazor at blazor.net

B¥ Microsoft | NET wnyner. reatures Leam Docs Downloads Community UVETV All Microsoft

Home > ASPNET > WebApps > Blazor

Blazor

Build client web apps with C#

To learn more, visit the Blazor documentation.

<h1>Counter</h1> . .
<h3>Current count: geurrentCount</h3> || Counter Interactive web Ul with C#
<button class="btn btn-prisary" | Current count: 0 Blazor lets you build interactive web Uls using C# instead of
@onclick="IncrementCount"> 1 n JavaScript. Blazor apps are composed of reusable web Ul
Click me components implemented using C#, HTML, and CSS. Both client
</button> and server code is written in C#, allowing you to share code and
libraries,
~i@code {
private int currentCount = @; Blazor is a feature of ASP.NET, the popular web development
private void IncrementCount() o
{ framework that extends the NET developer platform with tools

currentCount++; and libraries for building web apps.

This Workshop supports at least .NET 6 and C# 10 throughout for Blazor.

Qtutorialr.com 6 c® 0O

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/
https://blazor.net/

etutorialr.com

Visual Studio Code

To be able to Edit your Application you will need to Download, if you don't have it already, Visual Studio
Code for your Platform such as Windows from code.visualstudio.com.

Visual Studio Code

Code editing.
Redefined.

Download for Windows
Stable Build

Vrane C ©0AO

% 8 4 8

IntelliSense Run and Debug Built-in Git Extensions

)
- Una Kravets Jonathan Dunllp Pavithra Kodmad K
L e 0 M e v | Nemmekmieneie |

Once Downloaded, you can then Install it by following the steps in the Installation Wizard

3 Setup - Microsoft Visual Studio Code (User) . X
License Agreement
Please read the following important information before continuing.

Please read the following License Agreement. You must accept the terms of this agreement before continuing
with the installation.

This license applies to the Visual Studio Code product. Source Code for Visual
Studio Code is available at https.//github.com/Microsoft/vscode under the MIT
license agreement at https.//github.com/microsoft/vscode/blob/main/LICENSE txt.
Additional license information can be found in our FAQ at

https.//code.visualstudio.com/docs/supporting/fag.

MICROSOFT SOFTWARE LICENSE TERMS
MICROSOFT VISUAL STUDIO CODE

These license terms are an agreement between you and Microsoft Corporation (or based v

(D1 accept the agreement
(®) I do not accept the agreement

Cancel

Qtutorialr.com 7 c® 0O

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/
https://code.visualstudio.com/

etutorialr.com

Once Visual Studio Code has been Installed, or if it was already Installed, then if using Windows you
need to go to Start then search for Visual Studio Code and then select it.

) Ele Edit Selection View Go Run Jermin:

) Getstarted X

Visual Studio Code
Editing evolved
Start Walkthroughs
* Get Started with VS Code

Discover the best customizations to make VS Code yours.

* Loam the Fundamentals
Jump rightinto VS Code and get an overview of the must-have features.

Once Visual Studio Code has opened from the Menu choose File then Open Folder... then select the
Folder for your Application e.g. C:\Blazor\workshop. Then once the Folder has been opened Select the Yes,
I trust the authors option in the Do you trust the authors of the files in this folder? if this is displayed.

e authors of the files in this folder?

Yes, | trust the authors No, | don't trust the authors
Trust folder and enable oll features Browse folder in restricted mode

Qtutorialr.com

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

Qtutorialr.com

Within Visual Studio Code is Explorer, expand the Folder for wwwroot and then css to find app.css, this
defines CSS styles for the Application, then at the bottom of app.css, type in the following Comment:

/* CSS */

on View Go fun Teminal Help appicss - werkshop - Visual Stuio Code Dgmlo

apposs X

€64, PHN2ZyB3aWRBADBNTY16h L aWdodDei NDK i THhtbG5 2PS JodHRWO18vd3d3Lnc 2 L9y Zy Sy MDA

OUTUNE
TIMELINE
X @040 & Bworkshop Ln67,Col 1 Spacesid UTF-GwithBOM CRIF 5 R 0O

Also in Visual Studio Code within the Explorer you can Expand the Folder for Pages to find the main
Component for the Application which is Index.razor, this is where you will be spending most of your time in
the Workshop, you need to clear the contents of this file so that it is Blank, like as follows:

) file Edit Selection View Go Run Jerminal Help inclex.razor - workshoy C Dam]oe
& Indexsazor X

WORKSHOR
- A

ouTUNE
TIMELInE
K @0A0 & Pworkshop In1,Coll Spacesd UTF-Bwith BOM CRIF ASPNETRazor /5 (3

Then while still in the Component of Index.razor in Visual Studio Code type in the following:

Qtutorialr.com

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

etutorialr.com

@page "/"
@* Injects *@

@code

{
// Variables

// Methods

}

@* Application *@

Then in Visual Studio Code from the Menu select File then Save to save these Changes to /Index.razor.
You should always do this when you make any Changes to Index.razor and other files.

Switch over to the Command Prompt that should be still open for dotnet watch and there should be the
following message, Do you want to restart your app - Yes (y) / No (n) / Always (a) / Never (v)? Press a

to select the Always Option and should you Close the Workshop then you will need to do this again in the
Command Prompt after getting everything running again and making your first Changes after doing so.

Then back in Visual Studio Code for the Component for the Application of Index.razor when you need to
use an @inject in the Component for the Application of Index.razor then these should be placed below
the Comment using the Razor Syntax @* and *@ of @ Injects *@ when needed in the Workshop.

To add or declare a Variable in the Component for the Application of Index.razor these should be placed
on their own line within the Block for @code below the Comment using the C# Syntax // of // Variables
or placed on their own line below any previously declared Variable.

To add a Method in the Component for the Application of Index.razor such as a Function that has a
return for a Value or one that is void and performs some functionality without Returning a Value, both
will contain { for the start of the Body of the Method and } for the end of the Body of the Method, then
these should be placed the Block for @code below the C# Syntax Comment of // Methods or placed
below the end of the Body of the Method of any previously declared Methods.

Finally anything else to be added using a combination of HTML and Razor Syntax in the Component for
the Application of Index.razor then this should be typed in below the Razor Syntax Comment of @*

Application *@ or below any previously entered HTML and Razor.

You can use the same Blazor Application throughout the Workshop and you don't need to remove
anything else.

@tutorialr.com 10 BIOI®)

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

etutorialr.com

Components

Components make up Blazor Applications using Razor Components also known as Blazor Components.
Components are self-contained, they define part of a User Interface and with Logic to define and enable
Dynamic Behaviour. Components are a combination of C#, HTML and Razor Syntax.

Follow Setup and Start and you should have the Command Prompt for dotnet watch open, your
Browser should also be open and you should also have Visual Studio Code open with the Folder for the
Workshop open e.g. C: \Blazor\workshop.

Then in Visual Studio Code select within Explorer in the Folder of Pages the Component for the
Application of Index.razor and below the Comment of // Variables type in the following Variable:

string message = "Hello World";

This Variable is a string which contains some text, in this case Hello World when using a string it
needs to be surrounded by a pair of double quotes " and ". Then to use this Variable within a H1 Tag in
HTML, you can do so by putting @ in front of the Variable by typing below the Comment of @*
Application *@ the following:

<h1>@message</h1l>

Then in Visual Studio Code from the Menu select File then Save to save these Changes to Index.razor.
Then switch to the Browser that was opened with dotnet watch from the Command Prompt and you
should see the text Hello World displayed in a hl Tag.

Routing

Routing in Blazor allows you to provide a Route to a Component using the Directive of @page allowing
the Component to be accessed using a Relative URL or Website Address in the Browser.

Return to Visual Studio Code and from the Explorer you need to Right-Click on the Folder for Pages and
select the New File option then type in the following and then press Enter:

Message.razor

Message.razor will form the basis of a new Component so while still in Message.razor type in the following:

@page "/message/{Value}"
<h2>@Value</h2>
@code

{

[Parameter]
public string Value { get; set; } = string.Empty;

Then in Visual Studio Code from the Menu select File then Save to save these Changes to Message.razor.

Qtutorialr.com 11 BIOI®)

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

etutorialr.com

This Component for Message uses the Directive of @page with /message/{Value}, which will allow the
Component to be accessed using a Relative URL or Website Address in the Browser along with being able
to specify the Value. Then there a h2 Tag being used to display a Property of Value. This Property is C#
Syntax allowing the Value which is a string to be Read, denoted with get and to be Written, denoted with
set. This Property is assigned to, using = to the string.Empty which would be "" and this Property is
also used with the Attribute of Parameter which indicates that this Property can be set from another
Component.

To use this Component, from Visual Studio Code within Explorer from the Folder of Pages select the
Index.razor, then in the section with the Comment of @* Application *@ and below <h1>@message</h1>
type in the following:

<Message Value="Hello Again!"/>

Then in Visual Studio Code from the Menu select File then Save to save these Changes to Index.razor.
Then switch to the Browser that was opened with dotnet watch from the Command Prompt and you
should see the text Hello Again! displayed in a h2 Tag, then while still in the Browser in the Address Bar
type the following Relative URL after whatever is there e.g. https://Localhost: 7695 (your number may
be different):

/message/Hello!

In the Browser the Address Bar will be something like https://Localhost:76095/message/Hello! and
you should see the Text Hello! displayed in the Browser you can also change the Hello! passed in to
anything you like. When done use the Home option from list of options shown below Workshop to return
to the Page showing Hello World and Hello Again!

Qtutorialr.com 12 BIOI®)

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

etutorialr.com
Markup

Components can also be created to output specific Markup using C#, HTML and Razor Syntax. Return to
Visual Studio Code and from the Explorer you need to Right-Click on the Folder for Pages and select the
New File option then type in the following and then press Enter:

Date.razor
Date.razor will form the basis of a new Component so while still in Date.razor type in the following:

<h3>@Value.ToString("MMMM dd, yyyy")</h3>
@code

{

[Parameter]
public DateOnly Value { get; set; }

This Component for Date is being used to display a Property of Value in a h3 Tag using Method of
ToString("MMMM dd, yyyy") to Format the Output with MMMM for the Month, dd for the Day and yyyy
for the Year, these are Date Format Strings. This Property is C# Syntax allowing the Value which is a
DateOnly to be Read, denoted with get and to be Written, denoted with set. This Property is also used
with the Attribute of Parameter which indicates that this Property can be set from another Component.

To use this Component, from Visual Studio Code within Explorer from the Folder of Pages select
Index.razor and below the Comment of // Variables and after any previously declared Variable, type in
the following Variable:

DateOnly dateOfBirth = DateOnly.Parse("23-June-1912");

DateOnly is a Type in C# that only stores a Date and can use Method the Parse to get this from a string
representation of a Date such as "23-June-1912". While still in the Component for the Application of
Index.razor in the section with the Comment of @* Application *@ below <Message Value="Hello
Again!"/> type in the following:

<Date Value="dateOfBirth"/>

While still in Visual Studio Code from the Menu select File then Save to save these Changes to Index.razor.
If you switch to the Browser is open for the Workshop, you will see the Component for Date being
displayed as June 23, 1912, which is Alan Turing’s birthday, a pioneer in the field of computing!

Qtutorialr.com 13 BIOI®)

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

etutorialr.com

Styles and CSS

Components can also allow a Value to be used to define the CSS Style of a Tag of HTML. In Visual Studio
Code within Explorer from the Folder of Pages select the Index.razor and below the Comment of //
Variables and after any previously declared Variables, type in the following Variable:

string styling = "background-color: yellow";

To use the string as CSS Style, while still in the Component for the Application of Index.razor type in
below <Date Value="dateOfBirth"/> the following:

<div>Highlighted</div>

Then in Visual Studio Code from the Menu select File then Save to save these Changes to Index.razor.
Then switch over to the Browser that was opened with dotnet watch you will see the Text of Highlighted
with a Background Colour of yellow.

Then, back in Visual Studio Code from Explorer in the Folder of wwwroot and css select app.css and
define some CSS for the Application by typing in below the Comment of /* €SS */ the following:

.inverted {
color: white;
background-color: black;

}

.large {
font-size: 2.0em;
¥

Then in Visual Studio Code from the Menu select File then Save to save these Changes for app.css. Return
to the Component for the Application within the Folder for Pages of Index.razor and below the Comment
of // Variables and after any previously declared Variables, type in the following Variable:

string[] contrast = { "inverted", "large" };

The square-brackets of [and] denote an Array which is a set of Elements of a given Type in this case
they are a string with the Values of inverted and large. While still in the Component of /ndex.razor and
below <div>Highlighted</div> type in the following:

<div>Contrast</div>

This will set the class for the span using the Variable of contrast since CSS needs to be defined with
Spaces inbetween the Method for string.3Join will be used to combine the Values from the Array with a
Space, denoted with " ". If you switch over to the Browser that was opened with dotnet watch from the
Command Prompt it will have the Text of Contrast in white with a black Background.

Qtutorialr.com 14 c® 0O

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

e

tutorialrcom

Images

Components can contain any other HTML Elements such as an Image using the img Tag and can set the
src from anything, including a Method, to do this, in Visual Studio Code in the Component for the
Application of Index.razor within the Folder of Pages type below the Comment for // Methods the

following Method:

Uri GetImage()
{

}

return new("https://openmoji.org/data/color/svg/1F600.svg");

This Method of GetImage() will return a Uri, to use this, while still in the Component for the Application
of Index.razor below <div>Contrast</div>
in the section with the Comment of @* Application *@, type in the following:

<div>

</div>

This will set the src the img Tag using the Result from the Method of GetImage(). Back in the Browser,
you should see a Grinning Face displayed, image courtesy of openmoji.org.

Qtutorialr.com 15 c® 0O

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/
https://openmoji.org/

etutorialr.com

Binding and Events
Binding

Binding in Blazor can be used in Components to allow for Data Binding Elements using the Directive of
@bind with Values such as a Field or Variable, Property or an Expression.

After following Setup and Start and Components you should have the Command Prompt for dotnet
watch open, your Browser should also be open and you should also have Visual Studio Code open with
the Folder for the Workshop open e.g. C:\Blazor\workshop.

In Visual Studio Code select the Component for the Application, Index.razor found within Explorer in the
Folder of Pages below the Comment of // Variables and after any previously declared Variables, type
in the following Variable:

string text = string.Empty;

Then while still in Visual Studio Code for the Component for the Application of Index.razor, within the
section containing the Comment of @* Application *@ below the final </div> type in the following:

<div>
<input type="text" @bind="text" @bind:event="oninput" />
<h2>@text</h2>

</div>

This will use the Directive for @bind to Bind to the Field or Variable of text that was declared, and using
the bind:event will update text when the input is typed into as this will trigger the Event for oninput of
the input and underneath the Value of input will be displayed in a h2 Tag.

Then Visual Studio Code from the Menu select File then Save to save the Changes to Index.razor.

Switch to the Browser opened with dotnet watch from the Command Prompt you will see an input,
which when Typed into will have the same contents displayed underneath in a h2 Tag.

@tutorialr.com 16 BIOI®)

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

e

e

tutorialrcom

Events

Events in Blazor can be used in Components to create more Dynamic Behaviour in a Blazor Application.
In Visual Studio Code select the Component for the Application, Index.razor found within Explorer in the
Folder of Pages type below the Comment of @* Injects *@ type in the following:

@inject IJSRuntime runtime;

This will use inject to include IJSRuntime which is an Interface exposing functionality from JavaScript to
allow the Blazor application to Invoke features from JavaScript. Then below the Comment for //
Methods and after the Body of any previous Methods type the following Methods:

async void Alert(string message)

{
await runtime.InvokeVoidAsync("alert", message);
}
void ShowMessage()
{
Alert("Hello World");
}

The first Method is used to Invoke a feature from JavaScript, in this case for alert which is used to
display an alert Message in a Browser. This Method uses async and await which means it will perform a
Task that won't happen at the same time as anything else, or Asynchronously denoted with async and
when this is completed it will come back after this Task has completed which is denoted with await. The
second Method will Call the Method for Alert with the string of Hello World.

While still in the Component of /Index.razor in the section with the Comment of @* Application *@
below the final </div> type in the following:

<div>
<button class="btn btn-primary" @onclick="ShowMessage">
Show Message
</button>
</div>

Then you can select the Browser opened with dotnet watch from the Command Prompt you will see a
button labelled Show Message which when Clicked will display an alert displaying the Message of Hello
World.

tutorialr.com 17 c® 0O

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

etutorialr.com

You can also use Events to perform other Dynamic Behaviour such as changing the Style of an Element.
Return to Visual Sudio Code and select the Component for the Application, Index.razor found within
Explorer in the Folder of Pages then below the Comment of // Variables and after any previously
declared Variables, type in the following Variables:

string style = string.Empty;
bool isSelected = false;

The first Variable is a string for the Style and the second Variable is a bool which is a Value that can be
either true or false. Then below the Comment for // Methods and after the Body of any previous
Methods type the following Method:

void SetStyle()
{

isSelected = !isSelected;
style = $"font-weight:{(isSelected ? "bold" : "normal")}";

This Method will first set isSelected to isSelected with the ! or the Operator for Not, this works with a
bool by changing anything that was true to be false and anything that was false to be true. Then
style is set with a string using String Interpolation which is denoted with the use of $ at the start. There
is an Expression contained within the brackes of (and) which uses the Conditional Operators of ? and :.
Should the Value of isSelected be true then "bold" will be Returned from the Conditional or when
isSelected false then "normal” will be Returned from the Conditional.

Then, while still in the Component of Index.razor in the section with the Comment of @ Application *@
and below the final </div> type in the following:

<div>
Toggle Style
</div>

Then Visual Studio Code from the Menu select File then Save to save the Changes to Index.razor and then
go to the Browser that was opened with dotnet watch and Click the Link with the Text of Toggle Style
and this Text will switch between being bold or normal when Clicked.

Qtutorialr.com 18 BIOI®)

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

etutorialr.com

It is possible to combine Binding with Events. Return to Visual Sudio Code then select the Component for
the Application, Index.razor found within Explorer in the Folder of Pages and below the Comment of //
Variables and after any previously declared Variables, type in the following Variable:

string value = string.Empty;

While still in the Component of /Index.razor in the section with the Comment of @* Application *@
below the final </div> type in the following:

<div>
<input type="text" @bind="value" />
<button class="btn btn-primary" type="button"
@onclick="@(e => Alert(value))">
Show
</button>
</div>

This will use @bind to Bind the input to the Variable of value, then the button will use the Event of
@onclick to Call the Method of Alert with value.

In Visual Studio Code from the Menu select File then Save to save the Changes to Index.razor and then
you can select the Browser opened with dotnet watch and you should see an input with a button
labelled Show, anything you type in the input will be displayed in an alert when the button of Show is
Clicked.

Qtutorialr.com 19 BIOI®)

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

etutorialr.com

You can define Events in a Component. In Visual Studio Code and then from Explorer you need to Right-
Click on the Folder for Pages and select New File then type in the following and then press Enter.

Sizer.razor

This will form the basis of a new Component, within the Component of Sizer.razor type in the following:

<div>
<button class="btn btn-primary"
@onclick="Decrease" title="Decrease">-</button>
<button class="btn btn-primary"
@onclick="Increase" title="Increase">+</button>
Font Size: @Size<text>px</text>
</div>
@code
{

[Parameter]
public int Size { get; set; }

[Parameter]
public EventCallback<int> SizeChanged { get; set; }

private async void Resize(int delta)

{
Size = Math.Min(4@, Math.Max(8, + this.Size + delta));

await SizeChanged.InvokeAsync(Size);

}

private void Decrease() =>
Resize(-1);

private void Increase() =>
Resize(+1);

Starting with the Block for @code there is a Parameter for the Component of Size which is an int which
represents a whole number such as 20, there is also another Parameter for the Compoonent for an
EventCallback, this uses the Generic Syntax denoted by the angled-brackets or chevrons of < and > and
in this case this is the Type of int which will be used for the latest value of Size. Both of these use the
Keyword in C# for public, this means they are accessible outside of the Component.

Then there are Methods, marked with private which indicates they should only be used or be accessible
from within the Component, starting with Resize which is marked async which means it will perform a
Task that won't happen at the same time as anything else or Asynchronously. The Method performs a
Calculation using the delta value passed in as a Parameter for the Method, once the Calculation is done,
then the Method for InvokeAsync is invoked which will be used to get the latest Value to use. The last two
Methods invoke Resize and either pass in -1 or +1 accordingly.

Then above the Block for @code there is a button when Clicked or @onclick will either Decrease with - or
Increase with + and then there is a span which will display the Value of Size and use this with the Style of
font-size with it too.

Qtutorialr.com 20 BIOI®)

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

etutorialr.com

To use this Component, from Visual Studio Code within Explorer from the Folder of Pages select
Index.razor, then below the Comment of // Variables and after any previously declared Variables, type
in the following Variable:

int size = 20;

This Variable is an int and has been set to 20 for the initial Value of size. While still in Index.razor, in the
section with the Comment of @* Application *@ below the final </div>, type in the following:

<div>
<Sizer Size="@size" SizeChanged="(int value) => size = value" />
<div style="font-size:@(size)px">Resizable Text</div>

</div>

This will include the Component of Sizer and then will set the Value for Size with the Variable of size,
along with creating an Expression to use with SizeChanged which will update the Variable of size and
there is also a div where the Style for the font-size will be used too.

Then Visual Studio Code from the Menu select File then Save to save the Changes to Index.razor.

Then when you switch over to the Browser you can use the Sizer to change the font-size of itself and the
div contained the Text of Resizable Text too.

Qtutorialr.com 21 BIOI®)

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

etutorialr.com

Conditions and Collections

Conditions can be used in Blazor to control what is being displayed to add even more Dynamic
Behaviour to an Application.

After following Setup and Start, Components and Binding and Events. Then you should have the
Command Prompt for dotnet watch open, your Browser should also be open and you should also have
Visual Studio Code open with the Folder for the Workshop open e.g. C:\Blazor\workshop.

In Visual Studio Code select the Component for the Application, Index.razor found within Explorer in the
Folder of Pages below the Comment of // Variables and after any previously declared Variables, type
in the following Variable for a bool:

bool isShown = false;

Then in Visual Studio Code for Index.razor, below the Comment for // Methods and after the Body of
any previous Methods type the following Method:

void Toggle()
{

}

this.isShown = !this.isShown;

The Method of Toggle() will set isShown to isShown with the ! or the Operator for Not, this works with
a bool by changing anything that was true to be false and anything that was false to be true.

Then while still in Index.razor, in the section with the Comment of @* Application *@ below the final
</div>, type in the following:

<div>
<button class="btn btn-primary"
@onclick="Toggle">Click Here</button>
@if (isShown)
{

}

</div>

<h2>Hello World!</h2>

This contains a button that when Clicked or @onclick will invoke the Method for Toggle which updates
isShown. Below this is a Conditional Statement of if which the contents of which, containing a h2 Tag
with the Text of Hello World! but this will only be displayed when isShown is true.

If you switch to the Browser that was opened with dotnet watch from the Command Prompt, you will

see the button with the Text of Click Here, which when Clicked will either display underneath the Text of
Hello World! in a h2 Tag or hide it when Clicked if it is already there.

Qtutorialr.com 22 BIOI®)

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

etutorialr.com

Components can also display the contents of a Collection. Return to Visual Sudio Code and select the
Component for the Application, Index.razor found within Explorer in the Folder of Pages then below the
Comment of // Variables and after any previously declared Variables, type in the following Variable:

List<string> items = new()

{
"Hello",

"World"
i

The Collection used here is a List which uses the Generic Syntax denoted by the angled-brackets or
chevrons of < and > and in this case this List is has Elements with a Type of string with the Values being
the string of "Hello" and "World".

While still in the Component for the Application of Index.razor, in the section with the Comment of @*
Application *@ and below the final </div>, type in the following:

<div>

@foreach (string item in items)

{

}

</div>

@item</1i>

Within this is a ul for an Unordered List or Bulleted List then uses foreach to go through each Value in
the Collection as a string and output them using a 1i or List Item.

In Visual Studio Code from the Menu select File then Save to save the Changes to Index.razor, then switch
over to the Browser that was opened, there will be a Bulleted List showing the List Items of Hello and
World.

You can combine Conditions and Collections using a switch to display values from a Variable. Return to
Visual Sudio Code and select the Component for the Application, Index.razor found within Explorer in the
Folder of Pages then below the Comment of // Variables and after any previously declared Variables,
type in the following Variable:

Dictionary<string, string> values = new()

{
{ "Nome", "" },
{ "Danger", "red" },
{ "Warning", "yellow" },
{ "Proceed", "green" }
}s

The Collection used here is a Dictionary which also uses the Generic Syntax denoted by the angled-
brackets or chevrons of < and > and in this case this Dictionary is has Elements with the Key and the
Value the Type of string and has some Values set.

Qtutorialr.com 23 BIOI®)

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

etutorialr.com

While still in the Component for the Application of Index.razor, in the section with the Comment of @*
Application *@ and below the final </div>, type in the following:

<div>

@foreach (var value in values)

{

@switch (value.Key)
{

case "Danger":

<span style="background-color:

Danger

break;

case "Warning":

<span style="background-color:

Warning

break;

case "Proceed":

<span style="background-color:

Proceed

break;

default:

None

break;

¥
</1li>
}

</div>

red">

yellow">

green">

Within this is a ul for an Unordered List or Bulleted List then uses foreach to go through each Value in
the Collection as a var which means the Type can be Inferred rather than Explicitly stated. Then there is a
switch which will use the Key from the Dictionary of Values and output using a 11i or List Item for a
given case of the Key with default being used for any other Value.

In Visual Studio Code from the Menu select File then Save to save the Changes to Index.razor. Then if you
switch over to the Browser there will be another Bulleted List showing the List Items of None, then Danger
with a red Background, Warning with a yellow Background and Proceed with a green Background.

@tutorialr.com 24

©@®O

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

etutorialr.com

Forms

Forms in Blazor take advantage of built-in Components for Input and you can Bind to a Model using
Data Annotations that allow you to Validate any Input from Forms.

Follow Setup and Start, Components, Binding and Events and Conditions and Collections. You should
then have the Command Prompt for dotnet watch open, your Browser should also be open and you
should also have Visual Studio Code open with the Folder for the Workshop open

e.g. C:\Blazor\workshop.

In Visual Studio Code from the Menu select File and then New Text File then select File again and this
time choose the Save option, select the Folder for the Workshop e.g. C:\Blazor\workshop, then set the
Filename to the following:

Model.cs

Then either press Enter or select Save once done, in Visual Studio Code from the Explorer within the
Workshop select Model.cs and then type in the following:

using System.ComponentModel.DataAnnotations;

public class Model

{
[Required]
public string? Name { get; set; }

Then in Visual Studio Code from the Menu select File then Save to save the Changes for Model.cs, which is
a class which in C# is a pattern of a particular object. In this case it will be for Name which is a Property
with the Type of a string? the ? denotes that this Property can be null which is a special Value that
means it has no value. The Property also has an Attribute that is part of the Data Annotations which is
brought in with using of System.ComponentModel.DataAnnotations to denote that this Property is
Required so it must have a Value when used with the Form.

Then in Visual Studio Code in the Explorer within the Folder of Pages in the Component for the
Application of Index.razor below the Comment of // Variables and after any previously declared
Variables type in the following Variable:

Model model = new();

This will create an Instance of the Class for the Model so it can be used in the Form.

Qtutorialr.com 25 BIOI®)

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

etutorialr.com

While still in Visual Studio Code for Index.razor, below the Comment for // Methods and after the Body
of any previous Methods type the following Method:

void HandleValidSubmit()
{

}

Alert(model.Name ?? string.Empty);

This Method will use the Method for Alert to display a message containing the Value of Name from the
Instance of Class for Model of model. This also features the ?? or Null-coalescing Operator which when
the value is null it will use Value for string.Empty or "" instead.

Then while still in Visual Studio Code in the Component for the Application of Index.razor, in the section
with the Comment of @* Application *@ and below the final </div>, type in the following:

<div>
<EditForm Model="@model" OnValidSubmit="@HandleValidSubmit">
<DataAnnotationsValidator />
<label>
Name
<InputText id="name" @bind-Value="model.Name" />
</label>
<ValidationSummary />
<button class="btn btn-primary" type="submit">Submit</button>
</EditForm>
</div>

This uses the built-in Component of EditForm with the Model set to the Instance of model for the Class it
uses the Method of HandlevalidSubmit when the Form is Valid, this is based on the
DataAnnotationsValidator which will check if the Property of Name is not null and has a Value. The
Component of InputText and is Bound to the Property from the Model of Name. If there is no Valid input
then any issues will be displayed using the ValidationSummary then finally there is the button with the
type of submit to process the Form with the Text of Submit.

In Visual Studio Code from the Menu select File then Save to save the Changes to Index.razor. Then, when
you switch to the Browser that was opened with dotnet watch from the Command Prompt, there will be
an input next to the button with the Text of Submit if you type in anything then Click on Submit then it
will display an alert with what was typed in, if nothing is entered then it will state that The Name field is
required. along with showing the input in red.

Qtutorialr.com 26 BIOI®)

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

etutorialr.com

Dependency Injection

Dependency Injection in Blazor allows Services to be Injected into an Application, these Services can be
either Framework-registered or Custom. Dependency Injection is a software design pattern allowing
functionality to be provided to a given part of an Application to achieve Inversion of Control where
Implementation is written to depend on or Implement higher-level abstractions to allow for more
modular and maintainable code.

Follow Setup and Start, Components, Binding and Events, Conditions and Collections and Forms. You
should then have the Command Prompt for dotnet watch open, your Browser should also be open and
you should also have Visual Studio Code open with the Folder for the Workshop open

e.g. C:\Blazor\workshop.

In Visual Studio Code from the Menu select File and then New Text File then select File again and this
time choose the Save option, select the Folder for the Workshop e.g. C:\Blazor\workshop, then set the
Filename to the following:

DemoService.cs

Then either press Enter or select Save once done, in Visual Studio Code from the Explorer within the
Workshop select DemoService.cs and then type in the following class:

public class DemoService

{
public string GetMessage()
{
return "Hello Demo!";
}
}

This class represents a simple Service that has a single Method of GetMessage () which will return the
string of "Hello Demo!".

Then in Visual Studio Code from the Explorer for Workshop you should find program.cs. In this, below the

line of builder.Services.AddScoped(sp => new HttpClient { BaseAddress = new
Uri(builder.HostEnvironment.BaseAddress) }); type in the following:

builder.Services.AddScoped(sp => new DemoService());

This line will Register the Service with the Application. Then in Visual Studio Code from the Menu select
File then Save to save the Changes to program.cs.

Qtutorialr.com 27 BIOI®)

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

Qtutorialr.com

Then while still in Visual Studio Code select the Component for the Application, Index.razor found within
Explorer in the Folder of Pages and type below the Comment of @ Injects *@ and after any previous
@inject type in the following:

@inject DemoService service;

Then while still in the Component for the Application of Index.razor, within the section with the Comment
of @ Application *@ and below the final </div>, type in the following:

<h2>@service.GetMessage()</h2>

This will get the Value for a h2 Tag using the Method of GetMessage from the Service that was Injected
using Dependency Injection.

Then switch to the Browser that was opened with dotnet watch from the Command Prompt and you

should see the text Hello Demo! displayed in a h2 Tag and that concludes this Workshop about Blazor
from tutorialr.com!

Qtutorialr.com 28 BIOI®)

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/
https://tutorialr.com/

