

Blazor Emoji Bingo

https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/
https://twitter.com/tutorialrdotcom
https://www.tutorialr.com/
https://www.tutorialr.com/workshops/

1

Contents

Setup ... 2

.NET ... 2

Visual Studio Code .. 3

Project .. 4

Package ... 5

Workspace .. 5

Extension ... 6

Build .. 7

Blazor.. 7

Start .. 8

File ... 9

Using, Namespace & Classes ... 10

Program.. 12

Constants ... 13

Members .. 13

Properties .. 14

Choose & Get Methods ... 15

Swap Method ... 16

Layout Method .. 17

Call Method .. 18

Callback Method ... 19

Ready Method ... 20

New Method & Constructor... 21

Asset Component ... 22

Output Component ... 24

Index Page ... 26

Index Title .. 28

Index Container ... 28

Index Form .. 29

Play ... 30

Single Player ... 30

Multi Player ... 31

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

2

Setup

.NET

.NET includes Blazor so you will need to Download and Install the latest version of the .NET SDK, which if

you don’t have it already you can Download it for Windows or Mac using a Browser from dot.net

Once the Installer has been Downloaded open or run it to begin Installation of the .NET SDK then follow

the steps in the Installation Wizard

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/
https://dot.net/

3

Visual Studio Code

Visual Studio Code is a free Integrated Development Environment or IDE created by Microsoft and will

be used in the Workshop and will make writing the Project easier. You can Download it, if you don’t have

it already, for Windows or Mac using a Browser from code.visualstudio.com

Once the Installer has been Downloaded open or run it to begin Installation of Visual Studio Code then

follow the steps in the Installation Wizard

Once you’ve installed .NET and Visual Studio Code then you are ready for the rest of the Workshop.

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/
https://code.visualstudio.com/

4

Project

Once the .NET SDK and Visual Studio Code is Installed, then if using a Mac, you then need to go to

Finder then search for Terminal and then select it, or if using Windows, you need to go to Start then

search for Command Prompt and then select it, so it launches as follows:

Once in the Command Prompt or Terminal you will create a new Project with the .NET CLI that was

Installed as part of the .NET SDK. To create the new Project in the Command Prompt or Terminal type or

Copy and Paste the following command and then press Enter:

This will create a Project for Blazor using WebAssembly or wasm for Blazor.Emoji.Bingo. Once this

Project has been created in the Command Prompt or Terminal you will need to change to the Folder

using cd for the Workshop by typing in the following and then press Enter:

dotnet new blazorwasm -o Blazor.Emoji.Bingo

cd Blazor.Emoji.Bingo

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

5

Package

While still in the Command Prompt or Terminal you will add the Package for the Emoji that will be used

in Blazor.Emoji.Bingo type or Copy and Paste the following command and then press Enter:

Information - This will add the Package for Comentsys.Assets.FluentEmoji.Shaded created by Peter Bull to

the Project that contains the open-source Fluent Emoji created by Microsoft in a 3D or Shaded style.

Workspace

While still in the Command Prompt or Terminal to open the Workspace for the Project type or Copy and

Paste the following command and then press Enter:

Once Visual Studio Code has been opened select the Yes, I trust the authors option in the Do you trust

the authors of the files in this folder? if this is displayed as follows:

You can also now close the Command Prompt or Terminal as it is no longer needed in the Workshop.

dotnet add package Comentsys.Assets.FluentEmoji.Shaded

code .

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

6

Extension

Then in Visual Studio Code select Extensions from the Sidebar search for C# and then select Extension

for C# from Microsoft which should be as follows and select Install if not done already:

Once the Extension has been Installed then select Explorer from the Sidebar in Visual Studio Code.

Once you have .NET and Visual Studio Code installed, have created the Project, added the Package,

opened Visual Studio Code and installed the Extension then you have finished the Setup of the

Workshop, otherwise check over everything, then you are ready for the Build part of the Workshop!

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

7

Build

Blazor

Blazor was created by Microsoft allows you to build interactive web applications using C#, HTML and CSS

that supports both Client using Web Assembly in the Browser and Server using ASP.NET.

Information - Blazor allows you to develop web applications where you can run your code directly on the

Client in the Browser using WebAssembly or run your code on the Server where events are passed to the

Client using SignalR. You can even re-use code between Client and Server. You can find out more about

Blazor including documentation, examples and more at blazor.net

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/
https://blazor.net/

8

Start

If you have completed Setup already but don’t have Visual Studio Code with the Project open, then if

using Windows, you need to go to Start then search for Visual Studio Code and then select it or on Mac

locate it using Finder, then from the Menu choose File then Open Folder... then select the Folder for your

Project e.g., C:\Workshop\Blazor.Emoji.Bingo and once opened in Visual Studio Code from the Sidebar

select the Explorer which will be the icon with two pages.

If you have completed Setup but do have Visual Studio Code with the Project open, then in Visual Studio

Code select Terminal and then New Terminal and then once the Terminal has appeared type in the

following command and then press Enter:

Once this is done Visual Studio Code will Build the Project and display it in a Browser as follows:

If you don’t see anything like this in a Browser or have any problems, then check over anything you might

have missed in any previous steps. Otherwise, you have successfully started the Project in your Browser,

you will need to make sure to keep this Browser open throughout the Workshop.

If you accidently close the Browser then you can return to Visual Studio Code and select the Terminal and

then press Ctrl+C in Windows or Command+C on Mac on the Keyboard and then in the Terminal type

dotnet watch again which should relaunch the Browser or if you close Visual Studio Code then you can

just launch Visual Studio Code again then from the Terminal type dotnet watch to launch the Browser.

dotnet watch

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

9

File

Within Visual Studio Code from the Explorer move the Cursor over Blazor.Emoji.Bingo you will see a

New File… option, if you select this and then type in the name as follows and then press Enter:

Once you press Enter after typing in the name you should see a blank Bingo.cs or you can select it from the

Explorer in Visual Studio Code so you can see it as follows:

Should you make any mistakes with the C# in this Workshop then you will see Errors in the Terminal when

you Save any changes. So if you see any Errors double check you haven’t missed anything, the key thing to

remember is balance, you will be using a lot of curly braces that open like so { but will always have a

counterpart of } this also applies to square brackets that will have both [and] and rounded brackets of (

and) so it is a good idea to check if these are balanced, if you see any double-quotes or " then you should

always expect to see another " nearby. Where you see any semi colons or ; remember to include them,

sometimes the smallest mistake that is easy to fix makes it work once corrected!

Should you make any mistakes with the HTML or Razor these may be harder to spot and may just not look

correct in the Browser so make sure any angled brackets you see should open with < then you should

expect to see > nearby although you might see one on their own in C# but for C# that’s okay!

Errors will give you an idea of where to look for the mistake, they will often give a line number which you

can check against the value shown at the bottom of Visual Studio Code you can always Copy and Paste

any code in the Workshop but read through what you copied to see if you understand what it is doing!

Warnings may appear at certain Steps, but you will resolve these in later Steps of the Workshop.

Bingo.cs

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

10

Using, Namespace & Classes

While still in Visual Studio Code at the top of Bingo.cs from Explorer type or Copy and Paste the following:

Information - Functionality from the Package of Comentsys.Assets.FluentEmoji.Shaded that was

added is included at the top of the class with the using for Comentsys.Assets.FluentEmoji which is

the namespace for the Package. namespaces in C# are used to group related functionality together such as

the namespace for Blazor.Emoji.Bingo. There is also a class for Column, Row and Display. In C# a

class represents something or an Object in such a Row or Column. The Column contains the Emoji with a

Primary and Secondary one which are represented by FluentEmojiType and uses a Constructor of

Column(FluentEmojiType primary, FluentEmojiType secondary) to set those values which is

Finally, there is a Comment which is anything with // in front of it, such as // Bingo Class below which

another class will be defined in the next part of the Workshop.

If you are typing anything in, then please check everything has been typed in exactly or you can Copy and

Paste something instead. In C# casing matters, for example comentsys.assets.fluentemoji is wrong but

Comentsys.Assets.FluentEmoji is correct.

You don’t have to worry about indentation in C# but if you need to Format anything you have typed or

Copy and Pasted in Visual Studio Code, you can do so with Shift+Alt+F on Windows or Shift+Option+F

on Mac or right-click in any File and select Format Document.

using Comentsys.Assets.FluentEmoji;
namespace Blazor.Emoji.Bingo;

public class Column
{
 public Column(FluentEmojiType primary, FluentEmojiType secondary) =>
 (Primary, Secondary) = (primary, secondary);

 public FluentEmojiType Primary { get; set; }

 public FluentEmojiType Secondary { get; set; }
}

public class Row
{
 public List<Column> Columns { get; set; } = new();
}

public class Display
{
 public List<Row> Rows { get; private set; } = new();
}

// Bingo Class

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

11

While still in Visual Studio Code for Bingo.cs you will define the structure of the main class for the game.

There are Comments or lines beginning with // included to help you put things in the right place later in

the Workshop. So below the Comment of // Bingo Class type or Copy and Paste in the following:

You can then go to the Menu in Visual Studio Code and select File and then Save All, you may see in the

Terminal a message saying Do you want to restart your app - Yes (y) / No (n) / Always (a) / Never (v)?

you can select the Terminal then type y for Yes or a for Always to keep what you have done so far.

public class Bingo
{
 // Constants

 // Members

 // Properties

 // Choose & Get Methods

 // Swap Method

 // Layout Method

 // Call Method

 // Callback Method

 // Ready Method

 // New Method & Constructor

}

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

12

Program

In Visual Studio Code you will see Program.cs in the Explorer, select it and it should be like the following:

Within Program.cs above await builder.Build().RunAsync(); type or Copy and Paste the following:

Information - This will add the class of Bingo to be available to the Dependency Injection system used

in Blazor. Dependency Injection allows specific functionality to be provided anywhere that needs it which

will be the Page used later in the Workshop. In C# an Instance of a class is needed for it to be used but

by adding the class this way we can get Dependency Injection to do it for us, if you want to know more

about Dependency Injection you can read up on it after you have completed the Workshop.

At this point you should have created a File called Bingo.cs with contents including the class for Column,

Row and Display along with the structure of one for Bingo and modified Program.cs to include it. You can

go over any previous steps and check you’ve done everything correctly then continue with the Workshop.

builder.Services.AddSingleton<Bingo>();

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

13

Constants

From within Visual Studio Code and Explorer select Bingo.cs then once selected you will define some

Constants by typing or Copy and Paste below the Comment of // Constants the following:

Information - Constants are defined with const and these are things that will not change during the game

such as the minimum and maximum values for the game of Bingo. All the Constants are using int for

numbers and these values will only be used inside the class so are declared with private, once you have

finished playing the game as-is you could change these values to vary the rules such as how many Emoji to

use, how they are displayed and more!

Members

While still in Bingo.cs in Visual Studio Code you will define some Members by typing or Copy and Paste

below the Comment of // Members the following:

Information - Members represent values in class also known as Variables as these will change during

the game, these are only used within the class so are marked private. The Members with

FluentEmojiType[] will represent the Emoji needed as an Array which is a list of items with a fixed size

and those with List<int> represent lists of numbers that could vary in length and those with int

represent a single number. There is also a Timer which is used to trigger parts of the game automatically.

You can then go to the Menu in Visual Studio Code and select File and then Save All, you may see in the

Terminal a message saying Do you want to restart your app - Yes (y) / No (n) / Always (a) / Never (v)?

you can select the Terminal then type y for Yes or a for Always to keep what you have done so far.

private const int size = 5;
private const int rows = 10;
private const int columns = 9;
private const int delay = 3;
private const int minimum = 1;
private const int maximum = 90;

private FluentEmojiType[] _displayEmoji = Array.Empty<FluentEmojiType>();
private FluentEmojiType[] _currentEmoji = Array.Empty<FluentEmojiType>();
private List<int> _currentValues = new();
private List<int> _displayValues = new();
private Timer? _timer;
private int _interval;
private int _index;

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

14

Properties

While still in Bingo.cs in Visual Studio Code you will define some Properties by typing or Copy and Paste

below the Comment of // Properties the following:

Information - Properties also represent values within a class and these are used outside the class so are

marked public. Properties like these are used as Blazor can detect changes in them to update the Page in

the Browser. The Properties here will be values needed by the game including Value which can store

larger numbers known as long and there is a bool which can be true or false. There are also Properties

for Action, you will see how this is used later, along with ones that use the class of Display that was

defined earlier in the Workshop. You’ll also notice some of them have a ? in them, this denotes these can

have no value at all which in C# is called null, there is also new which is used to create an Instance of the

class. Some Properties such as Players, Player and Winner have values set to them for Default values.

You can then go to the Menu in Visual Studio Code and select File and then Save All you may see in the

Terminal a message saying Do you want to restart your app - Yes (y) / No (n) / Always (a) / Never (v)?

you can select the Terminal then type y for Yes or a for Always to keep what you have done so far.

public int Players { get; set; } = 1;

public int Player { get; set; } = 1;

public int Winner { get; set; } = -1;

public int Countdown { get; set; }

public long Value { get; set; }

public bool IsReady { get; set; }

public string? Message { get; set; }

public Action? Updated { get; set; }

public Display Display { get; set; } = new();

public Display Current { get; set; } = new();

public List<List<int>> Tickets { get; set; } = new();

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

15

Choose & Get Methods

While still in Bingo.cs in Visual Studio Code you will define some Methods by typing or Copy and Paste

below the Comment of // Choose & Get Methods the following:

Information - Methods of Choose and Get will only be used within the class so are declared with

private. These Methods also are marked as static as they don’t deal with Members or Properties which

would require an Instance. A Method is where some functionality can be defined as a block that can either

be self-contained with void or can return. The first Method is used to get a list of numbers and then

order these in a reasonably random way - there is some control over this which is intentional and is a key

part of making the game work as intended. The other Method is used to generate a list of Emoji, in this

case it is just those that contain a Face so they are a bit more recognisable and will get these based on a list

of values that have been provided. Both Methods use LINQ in C# such as Where and Select which makes

the behaviour of the Methods a lot easier to implement and easier to understand what they are doing. Also

used in these Methods is var which is where a Type such as Random or FluentEmojiType[] is inferred.

private static List<int> Choose(int total, int value)
{
 var random = new Random(value);
 return Enumerable.Range(minimum, maximum)
 .OrderBy(r => random.Next(minimum, maximum))
 .Take(total).ToList();
}

private static FluentEmojiType[] Get(List<int> values)
{
 var emoji = Enum.GetNames<FluentEmojiType>()
 .Where(item => item.Contains("Face"))
 .Select(Enum.Parse<FluentEmojiType>).ToArray();
 return values.Select(value => emoji[value]).ToArray();
}

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

16

Swap Method

While still in Bingo.cs in Visual Studio Code you will define another Method by typing or Copy and Paste

below the Comment of // Swap Method the following:

Information - This Method is used to switch around the values of the Properties of FluentEmojiType for

a Column, the first thing it does is use LINQ to first collect up all the Columns from all the Rows then based

upon the bool for isPrimary when this is true it will perform the first action after the question mark or ?

or should it be false it will perform the second action after the colon or : instead. This is used to get the

correct Column to be swapped around, this is done by using a Tuple which can represents a set of values in

C# used here to swap the values around. There may not be a Column that matches so it will be null so we

check it is not equal to null with != before swapping otherwise an Error would occur when swapping.

private static void Swap(Display display, FluentEmojiType emoji, bool swapPrimary)
{
 var query = display.Rows.SelectMany(r => r.Columns);
 var column = swapPrimary ?
 query.FirstOrDefault(c => c.Secondary == emoji) :
 query.FirstOrDefault(c => c.Primary == emoji);
 if (column != null)
 {
 (column.Primary, column.Secondary) =
 (column.Secondary, column.Primary);
 }
}

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

17

Layout Method

While still in Bingo.cs in Visual Studio Code you will define another Method by typing or Copy and Paste

below the Comment of // Layout Method the following:

Information - This Method is used to set up the Instance of the class for Display it will use a list along

with a single FluentEmojiType and will provide either one for a Column making use of ? and : with the

isPrimary value and then creates the appropriate Row with new along with the Column using the

Constructor with the FluentEmojiType provided.

You can then go to the Menu in Visual Studio Code and select File and then Save All you may see in the

Terminal a message saying Do you want to restart your app - Yes (y) / No (n) / Always (a) / Never (v)?

you can select the Terminal then type y for Yes or a for Always to keep what you have done so far.

private static void Layout(Display display, int rows, int columns,
 FluentEmojiType[]? list, FluentEmojiType item, bool isPrimary)
{
 if (rows * columns == list?.Length)
 {
 int index = 0;
 display.Rows.Clear();
 for (int r = 0; r < rows; r++)
 {
 var row = new Row();
 for (int c = 0; c < columns; c++)
 {
 var primary = isPrimary ? list[index] : item;
 var secondary = isPrimary ? item : list[index];
 row.Columns.Add(new Column(primary, secondary));
 index++;
 }
 display.Rows.Add(row);
 }
 }
}

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

18

Call Method

While still in Bingo.cs in Visual Studio Code you will define another Method by typing or Copy and Paste

below the Comment of // Call Method the following:

Information - This Method is used to represent the “call” from a Bingo game, it will use the Method of

Swap to show the Emoji for the value that was displayed and the current one for the player that should be

hidden. It will update the Property for Tickets which will be used to show the progress by removing one

of the matching numbers with Remove. Then it will check for a winner with Any to look for a ticket without

any values as that will be the winner and set a message with who won and reset the Timer with Dispose.

private void Call()
{
 Swap(Display, _displayEmoji[_index], true);
 Swap(Current, _displayEmoji[_index], false);
 var call = _displayValues[_index];
 Tickets.ForEach(w => w.Remove(call));
 Winner = Tickets.FindIndex(w => !w.Any()) + 1;
 if (Winner > 0)
 {
 Message = Winner == Player ?
 $"Your Player {Player} Bingo!" :
 $"Your Player {Player} Lost, Player {Winner} Bingo!";
 _timer?.Dispose();
 }
}

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

19

Callback Method

While still in Bingo.cs in Visual Studio Code you will define another Method by typing or Copy and Paste

below the Comment of // Callback Method the following:

Information - This Method will be used with the Timer and will be triggered every 1,000 milliseconds or

once per second. The first thing this Method does is check if the Countdown is over, when it is it will check

if the _interval value is more or equal to delay, then it checks if the _index which is how far into the

game we are is less than the maximum. When this is the case the Method for Call will be invoked then the

_interval will be reset to 0 and _index will be incremented by one with ++. There is also when

Countdown is not less than 0 then the Method will reduce the value of Countdown by one with --. The final

thing this Method does is perform Invoke on the Action for the Property of Updated.

You can then go to the Menu in Visual Studio Code and select File and then Save All you may see in the

Terminal a message saying Do you want to restart your app - Yes (y) / No (n) / Always (a) / Never (v)?

you can select the Terminal then type y for Yes or a for Always to keep what you have done so far.

private void Callback(object? state)
{
 if(Countdown < 0)
 {
 if(_interval >= delay)
 {
 if(_index < maximum)
 {
 Call();
 _interval = 0;
 _index++;
 }
 }
 else
 {
 _interval++;
 }
 }
 else
 {
 Countdown--;
 }
 Updated?.Invoke();
}

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

20

Ready Method

While still in Bingo.cs in Visual Studio Code you will define another Method by typing or Copy and Paste

below the Comment of // Ready Method the following:

Information - This Method will be used to begin the game, it will set or reset values used which includes

Countdown which will be based on the difference between the value it uses and the current time with

DateTime.UtcNow which does not consider a time zone so will be similar for every player. This Method

also uses the Methods for Choose and Get along with Layout to setup the game of Bingo and the Timer

which will invoke the Method of Callback every 1,000 milliseconds or once per second.

public void Ready()
{
 _index = 0;
 _interval = 0;
 Winner = -1;
 Tickets = new();
 Countdown = (int)(new DateTime(Value) - DateTime.UtcNow).TotalSeconds;
 _displayValues = Choose(maximum, (int)Value);
 _displayEmoji = Get(_displayValues);
 for (int i = 0; i < Players; i++)
 {
 Tickets.Add(Choose(size * size, i));
 }
 if (Player - 1 < Players)
 {
 _currentValues = Tickets[Player - 1];
 _currentEmoji = Get(_currentValues);
 Layout(Display, rows, columns, _displayEmoji,
 FluentEmojiType.HollowRedCircle, false);
 Layout(Current, size, size, _currentEmoji,
 FluentEmojiType.CrossMark, true);
 _timer = new Timer(Callback, null, 0, 1000);
 IsReady = true;
 }
}

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

21

New Method & Constructor

While still in Bingo.cs in Visual Studio Code you will define a Method and Constructor by typing below

the Comment of // New Method & Constructor the following:

Information - Method of new is used to begin a new game and is used by the Constructor which sets up

the class. It also sets the Value to one minute in the future for when the Countdown should complete to

play the game.

You can then go to the Menu in Visual Studio Code and select File and then Save All you may see in the

Terminal a message saying Do you want to restart your app - Yes (y) / No (n) / Always (a) / Never (v)?

you can select the Terminal then type y for Yes or a for Always to keep what you have done so far.

public void New()
{
 _timer?.Dispose();
 IsReady = false;
 Value = DateTime.UtcNow.AddMinutes(1).Ticks;
}

public Bingo() => New();

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

22

Asset Component

Within Visual Studio Code from the Explorer and move the Cursor over the Blazor.Emoji.Bingo you will

see a New File… option, select this then type in the name as follows and then press Enter:

This will form the basis of a Razor Component which is also known as a Blazor Component in Blazor or

just as Component in this Workshop, you should have a blank Component as follows:

Information - Components allow you to reuse or define either some functionality or some Razor and

HTML to create a piece or Component of an application that you can see in Blazor with this one being

used to output an Emoji.

Asset.razor

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

23

Within Asset.razor in Visual Studio Code you can define the Component by typing in or Copy and Paste

the following:

Information - The first part of this Component is a using for Comentsys.Toolkit which is another

Package that is used by the Package of Comentsys.Assets.FluentEmoji.Shaded then there is the

output of the Property for MarkupString and there is also a Property for AssetResource which is set

with a Parameter passed to the Component which will invoke the Method for OnParametersSetAsync

which has been overridden, denoted with override, to provide the functionality to display the

AssetResource for the Emoji.

You can then go to the Menu in Visual Studio Code and select File and then Save All you may see in the

Terminal a message saying Do you want to restart your app - Yes (y) / No (n) / Always (a) / Never (v)?

you can select the Terminal then type y for Yes or a for Always to keep what you have done so far.

@using Comentsys.Toolkit;
@Svg
@code
{
 internal MarkupString Svg { get; set; } = new();

 [Parameter]
 public AssetResource AssetResource { get; set; } = new();

 protected async override Task OnParametersSetAsync()
 {
 using var reader = new StreamReader(AssetResource.Stream);
 Svg = new MarkupString(await reader.ReadToEndAsync());
 }
}

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

24

Output Component

Within Visual Studio Code from the Explorer and move the Cursor over the Blazor.Emoji.Bingo you will

see a New File… option, select this and then type in the name as follows and then press Enter:

This will form the basis of another Component which should be blank as follows:

Information - This Component will be used to show the Rows and Columns of Emoji.

Output.razor

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

25

Then within Output.razor in Visual Studio Code you can define this Component by typing in or Copy and

Paste the following:

Information - This Component will use the other Component of Asset to create the visual layout with a

for loop with the class of Display to show the Rows then another for loop to show the Columns with

the Emoji using ShadedFluentEmoji.

You can then go to the Menu in Visual Studio Code and select File and then Save All you may see in the

Terminal a message saying Do you want to restart your app - Yes (y) / No (n) / Always (a) / Never (v)?

you can select the Terminal then type y for Yes or a for Always to keep what you have done so far.

@using Comentsys.Assets.FluentEmoji;
@for (int r = 0; r < Value.Rows.Count; r++)
{
 <div class="row">
 @for (int c = 0; c < Value.Rows[r].Columns.Count; c++)
 {
 <div class="col-sm text-center">
<Asset AssetResource="@ShadedFluentEmoji.Get(Value.Rows[r].Columns[c].Primary)" />
 </div>
 }
 </div>
}
@code
{
 [Parameter]
 public Display Value { get; set; } = new();
}

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

26

Index Page
Within Visual Studio Code from the Explorer for Blazor.Emoji.Bingo open Pages by selecting the > next

to it and select Index.razor, here you will see what is currently being displayed in the Browser as follows:

You will need to remove everything from Index.razor so it appears as follows:

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

27

Within Index.razor in Visual Studio Code you can define a new Page by typing in or Copy and Paste the

following which will also include some Comments to help you place things later in the Workshop:

Information - This updated Page provides the Instance of Bingo using Dependency Injection then there

is section where the Title will go then there is a check for IsReady and should this be true then the next

part will happen which is a check that Countdown is greater than zero the value will be displayed otherwise

the Container section will be shown. However, should IsReady be false then the section for Form will be

used instead. There is also Code for the Page which includes a Method where the implementation of which

has been overridden to provide our own denoted with override in this case it is for OnInitialized which

is called when the Page is first loaded, and this will be used to connect the Action of Updated to the

Method of StateHasChanged so that when Updated is triggered this will force Blazor to update the Page

with the latest changes to any Properties. Comments here are HTML ones like <!-- Comment --> instead

of // Comment that are used in C#.

@page "/"
@inject Bingo bingo;

<!-- Title -->

@if (bingo.IsReady)
{
 @if (bingo.Countdown > 0)
 {
 <h2>@bingo.Countdown</h2>
 }
 else
 {
 <div class="container">
 <!-- Container -->

 </div>
 }
}
else
{
 // Form

}
@code
{
 protected override void OnInitialized() =>
 bingo.Updated = () => this.StateHasChanged();
}

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

28

Index Title

While still within Index.razor in Visual Studio Code below the Comment of <!-- Title --> type in or

Copy and Paste the following:

Information - This will define a Title to be displayed in the tab or title bar of the Browser along with one

to be displayed on the Page itself along with a Button that can be used to start a new game when clicked

which is done by assigning the Event of onclick for the button to the Method of New.

Index Container

While still within Index.razor in Visual Studio Code below the Comment of <!— Container --> type in or

Copy and Paste the following:

<PageTitle>Blazor Emoji Bingo</PageTitle>

<h1>
 Blazor Emoji Bingo
 <button class="btn btn-primary" @onclick="@bingo.New">New</button>
</h1>

@if (bingo.Winner > 0)
{
 <div class="row alert alert-success" role="alert">
 @bingo.Message
 </div>
}
<div class="row">
 <div class="col-6">
 <Output Value="@bingo.Display" />
 </div>
 <div class="col-6">

 @bingo.Player

 <Output Value="@bingo.Current" />
 </div>
</div>
<div class="row row-cols-sm-6">
 @for (int i = 0; i < bingo.Tickets.Count; i++)
 {
 <div class="col">
 <div class="badge bg-secondary">
 @(i + 1)
 @(bingo.Tickets[i].Count)TG
 </div>
 </div>
 }
</div>

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

29

Information - The first section of the Page within the Container is for the Winner of the game which will

be indicated when the value is greater than or equal to zero, if so, it will show the Message which will be

either the message if you have won or who has won if you lost. The next section is the look-and-feel of the

game itself with the Component of Output used to display the Emoji being called and the current player’s

Emoji. The final section is to display the progress of the game for all players by outputting the values of

Tickets which will indicate how many Emoji a player has to go before they win the game or TG.

Index Form

Finally, while still within Index.razor in Visual Studio Code below the Comment of <!-- Form --> type in

or Copy and Paste the following:

Information - This form will begin the game when submitted which is done by assigning the Event of

onsubmit for the form to the Method of Ready. This form uses binding with bind for each of the

Properties of Players, Player and Value so that when these are typed into each input on the form

those values are captured, and the Properties set accordingly which are then used by the game.

If you need to Format anything you have Copy and Pasted in Visual Studio Code, you can do so with

Shift+Alt+F on Windows or Shift+Option+F on Mac or right-click in any File and select Format

Document.

You can then go to the Menu in Visual Studio Code and select File and then Save All you may see in the

Terminal a message saying Do you want to restart your app - Yes (y) / No (n) / Always (a) / Never (v)?

you can select the Terminal then type y for Yes or a for Always to keep what you have done so far.

You can check the Browser to see if it updated, if not then in Visual Studio Code select the Terminal and

then press Ctrl+C in Windows or Command+C on Mac on the Keyboard and then in the Terminal type

dotnet watch again which should relaunch the Browser or if you close Visual Studio Code then you can

just launch Visual Studio Code again then from the Terminal type dotnet watch to launch the Browser.

You have finished the Build of the Workshop and can Play the game using Single Player or Multi Player!

<form @onsubmit="bingo.Ready">
 <div class="form-group">
 <label>Total Players</label>
 <input type="text" class="form-control" @bind="bingo.Players" />
 </div>
 <div class="form-group">
 <label>Player</label>
 <input type="text" class="form-control" @bind="bingo.Player" />
 </div>
 <div class="form-group">
 <label>Value</label>
 <input type="text" class="form-control" @bind="bingo.Value" />
 </div>
 <button class="btn btn-success m-2">Ready</button>
</form>

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

30

Play

Single Player
Once you have completed the Setup and Build of the Workshop, if you return to the Browser and you

don’t see anything or there are any Errors, then check that you’ve completed each part of the Workshop

correctly and double-check that what you have is the same – remember the Tips & Tricks might help with

anything that was missed, otherwise in the Browser you should see something like the following:

You can play the game on your own in Single Player by pressing Ready then wait for the Countdown to

complete, then the game will start, and you should see something like the following:

You will see an Emoji appear where each Red Circle is every few seconds on the left and if one matches

yours on the right then you will see it replaced by a Red Cross, you can see how many are to go at the

bottom and when you match all twenty-five then you’ll win, however you always win in Single Player!

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

31

Multi Player

Multi Player makes it is possible for everyone to experience the same game as random numbers on

computers are not truly random, so can take advantage of this by using the same values for everyone,

although you have your own ticket. First collect a list of names with a number next to each one, the number

next to your name will be what you need for Player and the last number next to a name will be what you

need for Total Players then you should start a game or select New then enter those numbers. For a two-

player game for Player 1 needs to have Player as 1 and Total Players as 2 and will look like as follows:

Player 1 can share their Value with Player 2 and then select Ready. Then Player 2 should have Player as 2

and Total Players as 2 and will Copy and Paste the Value from Player 1 and this should look like as follows:

Once Player 2 has entered Total Players, Player and Value then they can also select Ready.

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

32

Then both Player 1 and Player 2 will see a Countdown after which the game will begin. Also make sure to

always keep the Browser visible during a game, after playing a game for a bit it will look something like for

Player 1 in a two-player game as follows:

For Player 2 in a two-player game after playing the game for a bit it will look something like as follows:

Both players will see the same Emoji being selected on the left side around the same time, but they will

have their own set of Emoji on the right side for their Ticket and the first Player to cross-off all their Emoji

will win the game, someone will always win it is just a matter of who wins first! When playing there may be

a slight difference in timing between when players see the Emoji, but this does not affect the outcome!

Once you have finished playing a game and someone has won you can close the Browser and Visual

Studio Code as that completes the Workshop!

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

