

Windows App SDK

Reversi

https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/
https://twitter.com/tutorialrdotcom
https://www.tutorialr.com/
https://www.tutorialr.com/tutorials/

1

Reversi

Reversi shows how you can create the game of Reversi or Othello based on the work by OttoBotCode,

using emoji and with a toolkit from NuGet using the Windows App SDK.

Step 1

Follow Setup and Start on how to get Setup and Install what you need for Visual Studio 2022 and

Windows App SDK.

In Windows 11 choose Start and then find or

search for Visual Studio 2022 and then select it.

Once Visual Studio 2022 has started select

Create a new project.

Then choose the Blank App, Packages (WinUI

in Desktop) and then select Next.

After that in Configure your new project type

in the Project name as Reversi, then select a

Location and then select Create to start a new

Solution.

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/OttoBotCode

2

Step 2
Then in Visual Studio within Solution Explorer for the Solution, right click on the Project shown below

the Solution and then select Manage NuGet Packages…

Step 3

Then in the NuGet Package Manager from the Browse tab search for

Comentsys.Toolkit.WindowsAppSdk and then select Comentsys.Toolkit.WindowsAppSdk by

Comentsys as indicated and select Install

This will add the package for Comentsys.Toolkit.WindowsAppSdk to your Project. If you get the Preview

Changes screen saying Visual Studio is about to make changes to this solution. Click OK to proceed

with the changes listed below. You can read the message and then select OK to Install the package.

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

3

Step 4

Then while still in the NuGet Package Manager from the Browse tab search for

Comentsys.Assets.FluentEmoji and then select Comentsys.Assets.FluentEmoji by Comentsys as

indicated and select Install

This will add the package for Comentsys.Assets.FluentEmoji to your Project. If you get the Preview

Changes screen saying Visual Studio is about to make changes to this solution. Click OK to proceed

with the changes listed below. You can read the message and then select OK to Install the package, then

you can close the tab for Nuget: Reversi by selecting the x next to it.

Step 5

Then in Visual Studio within Solution Explorer for the Solution, right click on the Project shown below

the Solution and then select Add then New Item…

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

4

Step 6

Then in Add New Item from the C# Items list, select Code and then select Code File from the list next to

this, then type in the name of Library.cs and then Click on Add.

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

5

Step 7

You will now be in the View for the Code of Library.cs, within this first type the following Code:

So far in Library.cs has using for Comentsys.Toolkit.WindowsAppSdk and others along with a namespace

which allows many classes to be defined together, usually a class is defined per file but to make things

easier each will be defined in Library.cs instead.

using Comentsys.Assets.FluentEmoji;
using Comentsys.Toolkit.Binding;
using Comentsys.Toolkit.WindowsAppSdk;
using Microsoft.UI;
using Microsoft.UI.Text;
using Microsoft.UI.Xaml;
using Microsoft.UI.Xaml.Controls;
using Microsoft.UI.Xaml.Input;
using Microsoft.UI.Xaml.Media;
using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;

namespace Reversi;

public enum Player
{
 None, Black, White
}

// Extensions, Position and Move Class

public class State
{
 // State Variables, Is Inside & Outflanked

 // Is Valid, Get Valid, Set Flip, Set Count & Swap

 // Get Winner, Set Turn & Constructor

 // Move & Occupied

}

public class Library
{
 // Constants, Variables, Get Source, Set Source, Set Valid & Get Valid

 // Player Source, Get Player, Get Score, Set Text, Set Flip & Set

 // Add & Play

 // Layout & New

}

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

6

Step 8

Still in Library.cs for the namespace of Reversi in Library.cs you can define a class for Extensions,

Position and Move after the Comment of // Extensions, Position & Move Class by typing the

following:

Extensions is used to define an extension Method for Player, then Position is used to define the

location of a piece in the game and Move is used to define which moves are possible and uses Position.

public static class Extensions
{
 public static Player Other(this Player player) =>
 player switch
 {
 Player.Black => Player.White,
 Player.White => Player.Black,
 _ => Player.None
 };
}

public class Position
{
 public int Row { get; set; }

 public int Column { get; set; }

 public Position(int row, int column) =>
 (Row, Column) = (row, column);

 public override bool Equals(object obj) =>
 obj is Position pos && Row == pos.Row && Column == pos.Column;

 public override int GetHashCode() =>
 Row.GetHashCode() + Column.GetHashCode();
}

public class Move
{
 public Player Player { get; set; }
 public Position Position { get; set; }
 public IEnumerable<Position> Outflanked { get; set; }
 public IEnumerable<Position> PreviousValid { get; set; }

 public Move(Player player, Position position,
 IEnumerable<Position> outflanked, IEnumerable<Position> previousValid) =>
 (Player, Position, Outflanked, PreviousValid) =
 (player, position, outflanked, previousValid);
}

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

7

Step 9

Still in the namespace of Reversi in Library.cs and in the class of State, after the Comment of //

Variables, Is Inside & Outflanked type the following Variables which represent values in the game

along with the gameboard along with Methods for IsInside which determines if a location is inside

another and Outflanked which are used do get the positions to outflank the other player in the game.

private const int rows = 8;
private const int columns = 8;

public Player[,] Board { get; }
public Dictionary<Player, int> Count { get; }
public Player Current { get; private set; }
public bool Over { get; private set; }
public Player Winner { get; private set; }
public Dictionary<Position, IEnumerable<Position>> Valid { get; private set; }

private bool IsInside(int row, int column) =>
 row >= 0 && row < rows && column >= 0 && column < columns;

private IEnumerable<Position> Outflanked(
 Position position, Player player, int rowOffset, int columnOffset)
{
 List<Position> outflanked = new();
 int row = position.Row + rowOffset;
 int column = position.Column + columnOffset;
 while (IsInside(row, column) && Board[row, column] != Player.None)
 {
 if (Board[row, column] == player.Other())
 {
 outflanked.Add(new Position(row, column));
 row += rowOffset;
 column += columnOffset;
 }
 else if (Board[row, column] == player)
 return outflanked;
 }
 return Enumerable.Empty<Position>();
}

private IEnumerable<Position> Outflanked(Position position, Player player)
{
 List<Position> outflanked = new();
 for (int rowOffset = -1; rowOffset <= 1; rowOffset++)
 {
 for (int columnOffset = -1; columnOffset <= 1; columnOffset++)
 {
 if (rowOffset == 0 && columnOffset == 0)
 continue;
 outflanked.AddRange(
 Outflanked(position, player, rowOffset, columnOffset));
 }
 }
 return outflanked;
}

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

8

Step 10

While still in the namespace of Reversi in Library.cs and the class of State and after the Comment of //

Is Valid, Get Valid, Set Flip, Set Count & Swap type the following Methods:

IsValid is used to determine if a location can be placed onto and is used with GetValid to determine this

for a given player. SetFlip is used to flip a player and this takes advantage of the Method defined in

Extensions which is also used in SetCount to update counter for a player and Swap to switch players.

private bool IsValid(
 Player player, Position position, out IEnumerable<Position> outflanked)
{
 outflanked = Board[position.Row, position.Column] == Player.None ?
 Outflanked(position, player) : Enumerable.Empty<Position>();
 return outflanked.Any();
}

private Dictionary<Position, IEnumerable<Position>> GetValid(Player player)
{
 Dictionary<Position, IEnumerable<Position>> valid = new();
 for (int row = 0; row < rows; row++)
 {
 for (int column = 0; column < columns; column++)
 {
 var position = new Position(row, column);
 if (IsValid(player, position, out IEnumerable<Position> outflanked))
 {
 valid[position] = outflanked;
 }
 }
 }
 return valid;
}

private void SetFlip(IEnumerable<Position> positions)
{
 foreach (var position in positions)
 {
 Board[position.Row, position.Column] =
 Board[position.Row, position.Column].Other();
 }
}

private void SetCount(Player player, int count)
{
 Count[player] += count + 1;
 Count[player.Other()] -= count;
}

private void Swap()
{
 Current = Current.Other();
 Valid = GetValid(Current);
}

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

9

Step 11

While still in the namespace of Reversi in Library.cs and the class of State and after the Comment of //

Get Winner, Set Turn & Constructor type the following Methods:

GetWinner will be used to check which of the players is the winner or if there is no winner. SetTurn will

swap the players around so each can take their turn and the Constructor for State will setup the initial

configuration and positions of the players to start the game.

private Player GetWinner()
{
 if (Count[Player.Black] > Count[Player.White])
 return Player.Black;
 if (Count[Player.Black] < Count[Player.White])
 return Player.White;
 return Player.None;
}

private void SetTurn()
{
 Swap();
 if (Valid.Any())
 return;
 Swap();
 if (Valid.Count == 0)
 {
 Current = Player.None;
 Over = true;
 Winner = GetWinner();
 }
}

public State()
{
 Board = new Player[rows, columns];
 Board[3, 3] = Player.White;
 Board[3, 4] = Player.Black;
 Board[4, 3] = Player.Black;
 Board[4, 4] = Player.White;
 Count = new Dictionary<Player, int>()
 {
 { Player.Black, 2 },
 { Player.White, 2 }
 };
 Current = Player.Black;
 Valid = GetValid(Current);
}

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

10

Step 12

While still in the namespace of Reversi in Library.cs and the class of State and after the Comment of //

Move & Occupied type the following Methods:

Move will be used to place a player on the board and flip the pieces the opposing player has placed

appropriately to complete a move in the game and Occupied is used to determine which places on the

board are not currently occupied by any player.

public bool Move(Position position, out Move move)
{
 if (!Valid.ContainsKey(position))
 {
 move = null;
 return false;
 }
 var player = Current;
 var previous = Valid.Keys;
 var outflanked = Valid[position];
 Board[position.Row, position.Column] = player;
 SetFlip(outflanked);
 SetCount(player, outflanked.Count());
 SetTurn();
 move = new Move(player, position, outflanked, previous);
 return true;
}

public IEnumerable<Position> Occupied()
{
 for (int row = 0; row < rows; row++)
 {
 for (int column = 0; column < columns; column++)
 {
 if (Board[row, column] != Player.None)
 yield return new Position(row, column);
 }
 }
}

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

11

Step 13

While still in the namespace of Reversi in Library.cs and in the class of Library after the Comment of //

Constants, Variables, Get Source, Set Source, Set Valid & Get Valid type the following

Constants, Variables and Methods:

Constants are values that are used in the game that will not change and Variables are used to store

various values and controls needed for the game. GetSourceAsync, SetSourceAsync and SetSource are

used to set the Emoji used to represent the players in the game. SetValid is used to set a valid position

and GetValue is used to get a valid position.

private const string title = "Reversi";
private const int square_size = 100;
private const int disc_size = 72;
private const int font = 24;
private const int size = 8;

private ImageSource[] _sources;
private State _state;

private TextBlock _text;
private Dialog _dialog;
private Grid _grid;

private async Task<ImageSource> GetSourceAsync(FluentEmojiType type) =>
 await FlatFluentEmoji.Get(type).AsImageSourceAsync();

private async Task SetSourceAsync() =>
_sources ??= (new ImageSource[]
{
 await GetSourceAsync(FluentEmojiType.GreenCircle),
 await GetSourceAsync(FluentEmojiType.BlackCircle),
 await GetSourceAsync(FluentEmojiType.WhiteCircle)
});

private void SetSource(Position position, ImageSource source) =>
 _grid.Children.Cast<Grid>()
 .First(f => Grid.GetRow(f) == position.Row
 && Grid.GetColumn(f) == position.Column)
 .Children.Cast<Image>().First().Source = source;

private void SetValid(IEnumerable<Position> positions, ImageSource source)
{
 foreach (var position in positions)
 {
 var square = _state.Board[position.Row, position.Column];
 if (square == Player.None)
 SetSource(position, source);
 }
}

private ImageSource GetValid(int row, int column) =>
 _state.Valid.ContainsKey(new Position(row, column)) ? _sources[0] : null;

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

12

Step 14

While still in the namespace of Reversi in Library.cs and in the class of Library after the Comment of //

Player Source, Get Player, Get Score, Set Text, Set Flip & Set type the following Methods:

PlayerSource will get the image needed to represent a player where valid, GetPlayer will get the name

of the player. GetScore will be used to get the score for both players, and this will be used by SetText to

display this. SetFlip will be used to flip the player images where needed and Set will be used to perform a

move in the game and update the valid locations.

private ImageSource PlayerSource(int row, int column)
{
 var player = _state.Board[row, column];
 return player != Player.None ? _sources[(int)player] : GetValid(row, column);
}

private string GetPlayer(Player player) =>
 Enum.GetName(typeof(Player), player);

private string GetScore() =>
 $"Score: {GetPlayer(Player.Black)}: {_state.Count[Player.Black]}
{GetPlayer(Player.White)}: {_state.Count[Player.White]}";

private void SetText() =>
 _text.Text = $"Current: {GetPlayer(_state.Current)} - {GetScore()}";

private void SetFlip(Move move)
{
 foreach (var position in move.Outflanked)
 SetSource(position, _sources[(int)move.Player]);
}

private void Set(Position position, Move move)
{
 SetValid(move.PreviousValid, null);
 var player = _state.Board[position.Row, position.Column];
 if (player != Player.None)
 SetSource(position, _sources[(int)player]);
 SetFlip(move);
 SetValid(_state.Valid.Keys, _sources[0]);
 SetText();
}

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

13

Step 15

While still in the namespace of Reversi in Library.cs and in the class of Library after the Comment of //

Play & Add type the following Methods:

Play used to perform a move in the game or indicate the game is over with a message and Add will be

used to add the squares that make up the layout of the board and will respond to the Event of Tapped and

will call Play along with adding an Image that will represent the player for the square.

private void Play(Position position)
{
 if (!_state.Over)
 {
 if (_state.Move(position, out Move move))
 Set(position, move);
 }
 else
 {
 _dialog.Show(
 $"Game Over! Winner: {GetPlayer(_state.Winner)} - {GetScore()}");
 }
}

private void Add(int row, int column)
{
 Grid square = new()
 {
 Width = square_size,
 Height = square_size,
 BorderThickness = new Thickness(1),
 BorderBrush = new SolidColorBrush(Colors.Black),
 Background = new SolidColorBrush(Colors.ForestGreen)
 };
 Image image = new()
 {
 Width = disc_size,
 Height = disc_size,
 Source = PlayerSource(row, column)
 };
 square.Children.Add(image);
 square.SetValue(Grid.RowProperty, row);
 square.SetValue(Grid.ColumnProperty, column);
 square.Tapped += (object sender, TappedRoutedEventArgs e) =>
 Play(new Position((int)((Grid)sender).GetValue(Grid.RowProperty),
 (int)((Grid)sender).GetValue(Grid.ColumnProperty)));
 _grid.Children.Add(square);
}

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

14

Step 16

While still in the namespace of Reversi in Library.cs and in the class of Library after the Comment of //

Layout & New type in the following Methods:

Layout will create the look-and-feel of the game by setting up all the elements and New will setup and start

a new game.

private void Layout(Grid grid)
{
 grid.Children.Clear();
 StackPanel panel = new()
 {
 Orientation = Orientation.Vertical
 };
 _text = new TextBlock()
 {
 FontSize = font,
 Margin = new Thickness(2),
 FontWeight = FontWeights.Bold,
 VerticalAlignment = VerticalAlignment.Center
 };
 SetText();
 panel.Children.Add(_text);
 _grid = new Grid();
 for (int row = 0; row < size; row++)
 {
 _grid.RowDefinitions.Add(new RowDefinition());
 for (int column = 0; column < size; column++)
 {
 if (row == 0)
 _grid.ColumnDefinitions.Add(new ColumnDefinition());
 Add(row, column);
 }
 }
 panel.Children.Add(_grid);
 grid.Children.Add(panel);
}

public async void New(Grid grid)
{
 _grid = grid;
 _state = new State();
 await SetSourceAsync();
 _dialog = new Dialog(grid.XamlRoot, title);
 Layout(grid);
}

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

15

Step 17

Then from Solution Explorer for the Solution

double-click on MainWindow.xaml to see the

XAML for the Main Window.

Step 18

In the XAML for MainWindow.xaml there be some XAML for a StackPanel, this should be Removed by

removing the following:

Step 19

While still in the XAML for MainWindow.xaml above </Window>, type in the following XAML:

This XAML contains a Grid with a Viewbox which will scale a Grid. It has a Loaded event handler for New

which is also shared by the AppBarButton.

<StackPanel Orientation="Horizontal"
HorizontalAlignment="Center" VerticalAlignment="Center">
 <Button x:Name="myButton" Click="myButton_Click">Click Me</Button>
</StackPanel>

<Grid>
 <Viewbox>
 <Grid Margin="50" Name="Display"
 HorizontalAlignment="Center"
 VerticalAlignment="Center" Loaded="New"/>
 </Viewbox>
 <CommandBar VerticalAlignment="Bottom">
 <AppBarButton Icon="Page2" Label="New" Click="New"/>
 </CommandBar>
</Grid>

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

16

Step 20

Then, within Solution Explorer for the Solution

select the arrow next to MainWindow.xaml

then double-click on MainWindow.xaml.cs to

see the Code for the Main Window.

Step 21

In the Code for MainWindow.xaml.cs there be a Method of myButton_Click(...) this should be

Removed by removing the following:

Step 22

Once myButton_Click(...) has been removed, type in the following Code below the end of the

Constructor of public MainWindow() { ... }:

Here an Instance of the Class of Library is created then below this is the Method of New that will be used

with Event Handler from the XAML, this Method uses Arrow Syntax with the => for an Expression Body

which is useful when a Method only has one line.

private void myButton_Click(object sender, RoutedEventArgs e)
{
 myButton.Content = "Clicked";
}

private readonly Library _library = new();

private void New(object sender, RoutedEventArgs e) =>
 _library.New(Display);

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

17

Step 23

That completes the Windows App SDK

application. In Visual Studio 2022 from the

Toolbar select Reversi (Package) to Start the

application.

Step 24

Once running you can then tap on the appropriate indicated Square to place either a White or Black

counter on the board to play the game until the game is over or the player with the highest score wins or

select New to start a new game.

Step 25

To Exit the Windows App SDK application,

select the Close button from the top right of the

application as that concludes this Tutorial for

Windows App SDK from tutorialr.com!

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/
https://tutorialr.com/

