

Windows App SDK

Match Game

https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/
https://twitter.com/tutorialrdotcom
https://www.tutorialr.com/
https://www.tutorialr.com/tutorials/

1

Match Game

Match Game shows how to create a game where you will see a set of Squares that are Black and White

then remember where the White ones are, then you will see a set of Grey ones before seeing a set of Black

ones and then just need to simply Match the correct ones to White to proceed using a toolkit from NuGet

using the Windows App SDK.

Step 1

Follow Setup and Start on how to get Setup and Install what you need for Visual Studio 2022 and

Windows App SDK.

In Windows 11 choose Start and then find or

search for Visual Studio 2022 and then select it.

Once Visual Studio 2022 has started select

Create a new project.

Then choose the Blank App, Packages (WinUI

in Desktop) and then select Next.

After that in Configure your new project type

in the Project name as MatchGame, then select

a Location and then select Create to start a new

Solution.

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

2

Step 2
Then in Visual Studio within Solution Explorer for the Solution, right click on the Project shown below

the Solution and then select Manage NuGet Packages…

Step 3

Then in the NuGet Package Manager from the Browse tab search for

Comentsys.Toolkit.WindowsAppSdk and then select Comentsys.Toolkit.WindowsAppSdk by

Comentsys as indicated and select Install

This will add the package for Comentsys.Toolkit.WindowsAppSdk to your Project. If you get the Preview

Changes screen saying Visual Studio is about to make changes to this solution. Click OK to proceed

with the changes listed below. You can read the message and then select OK to Install the package, then

you can close the tab for Nuget: MatchGame by selecting the x next to it.

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

3

Step 4

Then in Visual Studio within Solution Explorer for the Solution, right click on the Project shown below

the Solution and then select Add then New Item…

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

4

Step 5

Then in Add New Item from the C# Items list, select Code and then select Code File from the list next to

this, then type in the name of Library.cs and then Click on Add.

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

5

Step 6

You will now be in the View for the Code of Library.cs, within this first type the following Code:

Class defined so far Library.cs has using for package of Comentsys.Toolkit.WindowsAppSdk and others

along with a namespace which allows many classes to be defined together, usually a class is defined per

file but to make things easier each will be defined in Library.cs instead.

using Comentsys.Toolkit.Binding;
using Comentsys.Toolkit.WindowsAppSdk;
using Microsoft.UI;
using Microsoft.UI.Xaml;
using Microsoft.UI.Xaml.Controls;
using Microsoft.UI.Xaml.Data;
using Microsoft.UI.Xaml.Media;
using System;
using System.Collections.Generic;
using System.Collections.ObjectModel;
using System.Linq;
using System.Windows.Input;

namespace MatchGame;

public enum State
{
 Wait,
 Off,
 On
}

public enum Match
{
 Memorise,
 Waiting,
 Remember,
 Complete
}

// Item Class

// StateToBrushConverter Class

public class Library
{
 // Library Constants, Variables and Choose Method

 // Library Set, Change, Update & Pattern Method

 // Library Tick Method

 // Library Play, Layout & New Method

}

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

6

Step 7

Still in Library.cs for the namespace of MatchGame in Library.cs you will define a class after the Comment

of // Item Class by typing the following:

Item uses the class from the toolkit of ObservableBase which will be used for Data Binding the

Properties which include the State and Index along with the Command which will be used to allow

interaction with the element using Commanding.

public class Item : ObservableBase
{
 private State _state;
 private int _index;
 private readonly Action<int> _action;

 public Item(int index, State state, Action<int> action) =>
 (_index, State, _action) = (index, state, action);

 public ICommand Command =>
 new ActionCommandHandler((param) => _action(_index));

 public int Index
 {
 get => _index;
 set => SetProperty(ref _index, value);
 }

 public State State
 {
 get => _state;
 set => SetProperty(ref _state, value);
 }
}

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

7

Step 8

Still in Library.cs for the namespace of MatchGame in Library.cs you will define a class after the Comment

of // StateToBrushConverter Class by typing the following:

StateToBrushConverter uses the interface of IValueConverter for Data Binding which will allow the

colours of the Item in the game to be represented from either White, Black or Grey as a SolidColorBrush.

public class StateToBrushConverter : IValueConverter
{
 public object Convert(object value, Type targetType,
 object parameter, string language)
 {
 if (value is State state)
 {
 return new SolidColorBrush(value switch
 {
 State.On => Colors.White,
 State.Off => Colors.Black,
 _ => Colors.Gray
 });
 }
 return null;
 }

 public object ConvertBack(object value, Type targetType,
 object parameter, string language) =>
 throw new NotImplementedException();
}

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

8

Step 9

While still in the namespace of MatchGame in Library.cs and in the class of Library after the Comment of

// Library Constants, Variables and Choose Method type in the following Constants, Variables

and Method:

Constants are values that are used in the game that will not change and Variables are used to store

various values for the game. The Method of Choose will be used to create a list of unique randomised

numbers.

private const string title = "Match Game";
private const int interval = 1;
private const int total = 16;
private const int delay = 4;
private const int size = 4;

private readonly List<int> _hits = new();
private readonly List<int> _miss = new();
private readonly Dictionary<int, State> _states = new();
private readonly ObservableCollection<Item> _items = new();
private readonly Random _random = new((int)DateTime.UtcNow.Ticks);

private DispatcherTimer _timer;
private Dialog _dialog;
private Match _match;
private int _count;
private int _turns;

private List<int> Choose(int minimum, int maximum, int total) =>
 Enumerable.Range(minimum, maximum)
 .OrderBy(r => _random.Next(minimum, maximum))
 .Take(total).ToList();

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

9

Step 10

While still in the namespace of MatchGame in Library.cs and in the class of Library after the Comment of

// Library Set, Change, Update & Pattern Method type the following Methods:

Set is used to update the State for an Item and Change uses tuple-syntax to update the values being

passed in. Update is used to set the State for all items and Pattern is used to display the items that are to

be matched using Set.

private void Set(int index, State state) =>
 _items.FirstOrDefault(w => w.Index == index)
 .State = state;

private void Change(Match match) =>
 (_count, _match) = (delay, match);

private void Update(State state)
{
 foreach(var item in _items)
 item.State = state;
}

private void Pattern()
{
 _hits.Clear();
 _miss.Clear();
 _states.Clear();
 Update(State.Off);
 var positions = Choose(0, total, size);
 for (int index = 0; index < total; index++)
 {
 State state = State.Off;
 if (positions.Contains(index))
 {
 state = State.On;
 _states.Add(index, state);
 }
 Set(index, state);
 }
}

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

10

Step 11

While still in the namespace of MatchGame in Library.cs and in the class of Library after the Comment of

// Library Tick Method type the following Method:

Tick will be used by the Timer and will perform the actions in the game depending on the value of the

enum of Match which includes displaying a message when the game is finished using a Dialog and using

the Methods of Change or Update to display elements in the game as needed.

private void Tick()
{
 switch (_match)
 {
 case Match.Complete:
 _dialog.Show($"Game Over with {_turns} Matches!");
 _timer?.Stop();
 break;
 case Match.Memorise:
 if (_count == delay)
 Pattern();
 _count--;
 if (_count == 0)
 Change(Match.Waiting);
 break;
 case Match.Waiting:
 if (_count == delay)
 Update(State.Wait);
 _count--;
 if (_count == 0)
 Change(Match.Remember);
 break;
 case Match.Remember:
 if (_count == delay)
 Update(State.Off);
 _count--;
 if (_count == 0)
 {
 if (_hits.Count == size)
 {
 _turns++;
 Change(Match.Memorise);
 }
 else
 Change(Match.Complete);
 }
 break;
 }
}

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

11

Step 12

While still in the namespace of CodesGame in Library.cs and in the class of Library after the Comment of

// Library Play, Layout & New Method type the following Methods:

Play will be used when recalling a pattern of elements and will set them accordingly, Layout will use Play

and create set of elements and New will be used to start a new game and setup the Timer.

private void Play(int index)
{
 if (_match == Match.Remember &&
 _hits.Count + _miss.Count < size)
 {
 if (_states.ContainsKey(index) &&
 !_hits.Contains(index))
 _hits.Add(index);
 else if(!_states.ContainsKey(index) &&
 !_miss.Contains(index))
 _miss.Add(index);
 Set(index, State.On);
 }
}

private void Layout(ItemsControl display)
{
 for (int index = 0; index < total; index++)
 {
 _items.Add(new Item(index, State.Wait, (int i) => Play(i)));
 }
 display.ItemsSource = _items;
}

public void New(ItemsControl display)
{
 _turns = 1;
 _count = delay;
 _hits.Clear();
 _miss.Clear();
 _items.Clear();
 Layout(display);
 _match = Match.Memorise;
 _dialog = new Dialog(display.XamlRoot, title);
 _timer?.Stop();
 _timer = new DispatcherTimer()
 {
 Interval = TimeSpan.FromSeconds(interval)
 };
 _timer.Tick += (object sender, object e) =>
 Tick();
 _timer.Start();
}

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

12

Step 13

Then from Solution Explorer for the Solution

double-click on MainWindow.xaml to see the

XAML for the Main Window.

Step 14

In the XAML for MainWindow.xaml there be some XAML for a StackPanel, this should be Removed by

removing the following:

Step 15

While still in the XAML for MainWindow.xaml below <Window, type in the following XAML:

The XAML for <Window> should then look as follows:

<StackPanel Orientation="Horizontal"
HorizontalAlignment="Center" VerticalAlignment="Center">
 <Button x:Name="myButton" Click="myButton_Click">Click Me</Button>
</StackPanel>

xmlns:ui="using:Comentsys.Toolkit.WindowsAppSdk"

<Window
 xmlns:ui="using:Comentsys.Toolkit.WindowsAppSdk"
 x:Class="MatchGame.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:local="using:MatchGame"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 mc:Ignorable="d">

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

13

Step 16

While still in the XAML for MainWindow.xaml above </Window>, type in the following XAML:

This XAML contains a Grid with Resources using the StateToBrushConverter and also contains a

Viewbox which will Scale an ItemsControl which has a DataTemplate which contains a Button and

Piece which will be bound using Data Binding. It has a Loaded event handler for New which is also shared

by the AppBarButton.

<Grid>
 <Grid.Resources>
 <local:StateToBrushConverter x:Key="StateToBrushConverter"/>
 </Grid.Resources>
 <Viewbox>
 <ItemsControl Margin="50" Name="Display"
 HorizontalAlignment="Center"
 VerticalAlignment="Center" Loaded="New">
 <ItemsControl.ItemTemplate>
 <DataTemplate x:Name="DataTemplate">
 <Button Command="{Binding Command}">
 <ui:Piece IsSquare="True"
 Fill="{Binding State, Mode=OneWay,
 Converter={StaticResource StateToBrushConverter},
 ConverterParameter=True}"
 Foreground="{Binding State, Mode=OneWay,
 Converter={StaticResource StateToBrushConverter},
 ConverterParameter=False}" />
 </Button>
 </DataTemplate>
 </ItemsControl.ItemTemplate>
 <ItemsControl.ItemsPanel>
 <ItemsPanelTemplate>
 <VariableSizedWrapGrid MaximumRowsOrColumns="4"/>
 </ItemsPanelTemplate>
 </ItemsControl.ItemsPanel>
 </ItemsControl>
 </Viewbox>
 <CommandBar VerticalAlignment="Bottom">
 <AppBarButton Icon="Page2" Label="New" Click="New"/>
 </CommandBar>
</Grid>

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

14

Step 17

Then, within Solution Explorer for the Solution

select the arrow next to MainWindow.xaml

then double-click on MainWindow.xaml.cs to

see the Code for the Main Window.

Step 18

In the Code for MainWindow.xaml.cs there be a Method of myButton_Click(...) this should be

Removed by removing the following:

Step 19

Once myButton_Click(...) has been removed, type in the following Code below the end of the

Constructor of public MainWindow() { ... }:

Here an Instance of the Class of Library is created then below this is the Method of and New that will be

used with Event Handler from the XAML, this Method uses Arrow Syntax with the => for an Expression

Body which is useful when a Method only has one line.

private void myButton_Click(object sender, RoutedEventArgs e)
{
 myButton.Content = "Clicked";
}

private readonly Library _library = new();

private void New(object sender, RoutedEventArgs e) =>
 _library.New(Display);

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

15

Step 20

That completes the Windows App SDK

application. In Visual Studio 2022 from the

Toolbar select MatchGame (Package) to Start

the application.

Step 21

Once running you progress by remembering the positions of the Squares that are White that are shown

before a set of Squares that are Grey when you see a set of Squares that are Black if you get them right

you proceed to the next ones to Match but if you get any wrong you lose the game, or you can select New

to start a new game.

Step 22

To Exit the Windows App SDK application,

select the Close button from the top right of the

application as that concludes this Tutorial for

Windows App SDK from tutorialr.com!

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/
https://tutorialr.com/

