

Windows App SDK

Lucky Racer

https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/
https://twitter.com/tutorialrdotcom
https://www.tutorialr.com/
https://www.tutorialr.com/tutorials/

1

Lucky Racer

Lucky Racer shows how you can create a game where you can pick from a selection of cars to see if you

will be the winner in the quickest time using emoji and a toolkit from NuGet using the Windows App SDK.

Step 1

Follow Setup and Start on how to get Setup and Install what you need for Visual Studio 2022 and

Windows App SDK.

In Windows 11 choose Start and then find or

search for Visual Studio 2022 and then select it.

Once Visual Studio 2022 has started select

Create a new project.

Then choose the Blank App, Packages (WinUI

in Desktop) and then select Next.

After that in Configure your new project type

in the Project name as LuckyRacer, then select a

Location and then select Create to start a new

Solution.

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

2

Step 2
Then in Visual Studio within Solution Explorer for the Solution, right click on the Project shown below

the Solution and then select Manage NuGet Packages…

Step 3

Then in the NuGet Package Manager from the Browse tab search for

Comentsys.Toolkit.WindowsAppSdk and then select Comentsys.Toolkit.WindowsAppSdk by

Comentsys as indicated and select Install

This will add the package for Comentsys.Toolkit.WindowsAppSdk to your Project. If you get the Preview

Changes screen saying Visual Studio is about to make changes to this solution. Click OK to proceed

with the changes listed below. You can read the message and then select OK to Install the package.

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

3

Step 4

Then while still in the NuGet Package Manager from the Browse tab search for

Comentsys.Assets.FluentEmoji and then select Comentsys.Assets.FluentEmoji by Comentsys as

indicated and select Install

This will add the package for Comentsys.Assets.FluentEmoji to your Project. If you get the Preview

Changes screen saying Visual Studio is about to make changes to this solution. Click OK to proceed

with the changes listed below. You can read the message and then select OK to Install the package, then

you can close the tab for Nuget: LuckyRacer by selecting the x next to it.

Step 5

Then in Visual Studio within Solution Explorer for the Solution, right click on the Project shown below

the Solution and then select Add then New Item…

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

4

Step 6

Then in Add New Item from the C# Items list, select Code and then select Code File from the list next to

this, then type in the name of Library.cs and then Click on Add.

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

5

Step 7

You will now be in the View for the Code of Library.cs to define a namespace allowing classes to be defined

together, usually each is separate but will be defined in Library.cs by typing the following Code along with

using for Comentsys.Toolkit.WindowsAppSdk and others plus an enum for State and Class for Racer.

using Comentsys.Assets.FluentEmoji;
using Comentsys.Toolkit.WindowsAppSdk;
using Microsoft.UI;
using Microsoft.UI.Xaml.Controls;
using Microsoft.UI.Xaml.Input;
using Microsoft.UI.Xaml.Media;
using Microsoft.UI.Xaml.Media.Animation;
using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Windows.UI;

namespace LuckyRacer;

public enum State
{
 Select, Ready, Started, Finished
}

public class Racer
{
 public int Index { get; set; }
 public TimeSpan Time { get; set; }

 public Racer(int index) =>
 Index = index;

 public Racer(int index, TimeSpan time) =>
 (Index, Time) = (index, time);
}

public class Library
{
 // Constants, Variables & Choose Method

 // Get Finish, Get Racer, Set Sources & Get Image

 // Content, Move & Start

 // Finish & Progress

 // Race, Ready & Select

 // Add Racer & Add Finish

 // Layout & New

}

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

6

Step 8

While still in the namespace of LuckyRacer in Library.cs and in the class of Library after the Comment

of // Constants, Variables & Choose Method type the following Constants, Variables and Method:

Constants are values that are used in the game that will not change and Variables are used to store

various values, Instances of Racer and images needed for the game. There is also a Method of Choose

which is used to select randomised numbers which can be duplicated so the race is more even and fair.

private const string title = "Lucky Racer";
private const int image_size = 72;
private const int size = 400;

private readonly Random _random = new((int)DateTime.UtcNow.Ticks);

private Dialog _dialog;
private Grid _grid;

private bool _finish;
private int _count;
private State _state;
private Racer _winner;
private Racer _select;
private List<Image> _images;
private ImageSource[] _sources;

private List<int> Choose(int minimum, int maximum, int total)
{
 var choose = new List<int>();
 var values = Enumerable.Range(minimum, maximum).ToList();
 for (int index = 0; index < total; index++)
 {
 var value = _random.Next(0, values.Count);
 choose.Add(values[value]);
 }
 return choose;
}

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

7

Step 9

While still in the namespace of LuckyRacer in Library.cs and in the class of Library after the Comment

of // Get Finish, Get Racer, Set Sources & Get Image type the following Methods:

GetFinishAsync will return a Chequered Flag emoji to represent the finish line for the racers and

GetRacerAsync will return the image for the racers using the Racing Car emoji and will customise it using

different colours and these Methods will be both used by SetSourcesAsync to set the images used in the

game and GetImage will return an Image with a given ImageSource.

private async Task<ImageSource> GetFinishAsync() =>
 await FlatFluentEmoji.Get(FluentEmojiType.ChequeredFlag)
 .AsImageSourceAsync();

private async Task<ImageSource> GetRacerAsync(Color main, Color trim) =>
 await FlatFluentEmoji.Get(FluentEmojiType.RacingCar,
 new[]
 {
 Color.FromArgb(255, 248, 49, 47).AsDrawingColor(),
 Color.FromArgb(255, 202, 11, 74).AsDrawingColor()
 },
 new[]
 {
 main.AsDrawingColor(),
 trim.AsDrawingColor()
 }).AsImageSourceAsync();

private async Task SetSourcesAsync() =>
_sources ??= (new ImageSource[]
{
 await GetFinishAsync(),
 await GetRacerAsync(Colors.Red, Colors.DarkRed),
 await GetRacerAsync(Colors.Blue, Colors.DarkBlue),
 await GetRacerAsync(Colors.Green, Colors.DarkGreen),
 await GetRacerAsync(Colors.Goldenrod, Colors.DarkGoldenrod)
});

private Image GetImage(ImageSource source) =>
 new()
 {
 Height = image_size,
 Width = image_size,
 Source = source
 };

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

8

Step 10

While still in the namespace of LuckyRacer in Library.cs and in the class of Library after the Comment

of // Content, Move & Start type the following Methods:

Content will return a StackPanel containing a TextBlock as well as an image using GetImage, Move will

be used to display the progress of the race, which will use a Method for Progress which will be defined in

the next Step and Start will be ready for the game to start.

private StackPanel Content(string text, int index)
{
 var panel = new StackPanel()
 {
 Orientation = Orientation.Vertical,
 };
 panel.Children.Add(new TextBlock()
 {
 Text = text
 });
 panel.Children.Add(GetImage(_sources[index]));
 return panel;
}

private void Move(Image image, double from, double to, TimeSpan duration)
{
 var animation = new DoubleAnimation()
 {
 To = to,
 From = from,
 Duration = duration,
 EasingFunction = new ExponentialEase()
 {
 EasingMode = EasingMode.EaseIn
 }
 };
 var storyboard = new Storyboard();
 Storyboard.SetTargetProperty(animation, "(Canvas.Left)");
 Storyboard.SetTarget(animation, image);
 storyboard.Completed += (object sender, object e) =>
 Progress(sender as Storyboard);
 storyboard.Children.Add(animation);
 storyboard.Begin();
}

private void Start()
{
 _count = 0;
 _finish = false;
 _state = State.Select;
}

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

9

Step 11

While still in the namespace of LuckyRacer in Library.cs and in the class of Library after the Comment

of // Finish & Progress type the following Methods:

Finish will handle what happens when the race is over and determine if the Racer that was selected was

the winning one or not and Progress which was called in Move will be used to set how the Racer should

move across the game.

private async void Finish()
{
 if (_state == State.Finished)
 {
 var message = _select.Index == _winner.Index ?
 $"You Won in {_winner.Time}!" :
 $"You Lost! Winning Car";
 var content = Content(message, _winner.Index);
 await _dialog.ConfirmAsync(content);
 if (_finish)
 {
 foreach (var image in _images)
 {
 Move(image, 0, size - image_size,
 TimeSpan.FromSeconds(1));
 }
 _finish = false;
 }
 Start();
 }
}

private void Progress(Storyboard storyboard)
{
 if (_state == State.Started)
 {
 var duration = storyboard.GetCurrentTime();
 var racer = _images.First(w => (w.Tag as Racer)
 .Time == duration).Tag as Racer;
 _count++;
 if (_count == 1)
 _winner = new Racer(racer.Index, duration);
 if (_count == _images.Count)
 {
 _state = State.Finished;
 Finish();
 }
 _finish = true;
 }
}

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

10

Step 12

While still in the namespace of LuckyRacer in Library.cs and in the class of Library after the Comment

of // Race, Ready & Select type the following Methods:

Race will determine which Racer will win and will then set each Racer so that the time it takes to move

along the game matches the time that has been selected, Ready will give the player the option of which

Racer they think will win and once selected it will begin the race and Select will be used to set which

Racer has been selected.

private void Race()
{
 if (_state == State.Ready)
 {
 var index = 0;
 var times = Choose(5, 15, _sources.Length - 1);
 foreach (var image in _images)
 {
 var racer = image.Tag as Racer;
 racer.Time = TimeSpan.FromSeconds(times[index]);
 Move(image, size - image_size, 0, racer.Time);
 index++;
 }
 _state = State.Started;
 }
}

private async void Ready()
{
 if (_state == State.Ready)
 {
 var content = Content("Selected to Win", _select.Index);
 var result = await _dialog.ConfirmAsync(
 content, "Race", "Cancel");
 if (result)
 Race();
 else
 _state = State.Select;
 }
}

private void Select(Image image)
{
 if (_state == State.Select)
 {
 var racer = image.Tag as Racer;
 _select = racer;
 _state = State.Ready;
 }
 Ready();
}

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

11

Step 13

While still in the namespace of LuckyRacer in Library.cs and in the class of Library after the Comment

of // Add Racer & Add Finish type the following Methods:

AddRacer is used to add the racers to the game and will use GetImage to obtain the Image to be used

where each one will be a different colour then will add this to each Row of the Grid up to the number of

racers in the game and AddFinish will be used to get the image that will be used to indicate the finish line

for the race in the game.

private void AddRacer(Grid grid, int row)
{
 grid.RowDefinitions.Add(new RowDefinition());
 var racer = GetImage(_sources[row]);
 racer.Tag = new Racer(row);
 racer.Tapped += (object sender, TappedRoutedEventArgs e) =>
 Select(sender as Image);
 Canvas.SetLeft(racer, size - image_size);
 _images.Add(racer);
 var canvas = new Canvas()
 {
 Height = image_size,
 Width = size
 };
 canvas.Children.Add(racer);
 Grid.SetRow(canvas, row - 1);
 grid.Children.Add(canvas);
}

private void AddFinish(Grid grid, int row)
{
 grid.RowDefinitions.Add(new RowDefinition());
 var finish = GetImage(_sources.First());
 Grid.SetRow(finish, row - 1);
 grid.Children.Add(finish);
}

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

12

Step 14

While still in the namespace of LuckyRacer in Library.cs and in the class of Library after the Comment

of // Layout & New type in the following Methods:

Layout will create the look-and-feel of the game by setting up all the elements including the racers and the

finish line and New will setup and start a new game and will also setup the images used in the game.

private void Layout(Grid grid)
{
 _images = new();
 grid.Children.Clear();
 var panel = new StackPanel()
 {
 Orientation = Orientation.Horizontal
 };
 _grid = new Grid()
 {
 Height = size,
 Width = size
 };
 var finish = new Grid();
 for (int row = 1; row < _sources.Length; row++)
 {
 AddRacer(_grid, row);
 AddFinish(finish, row);
 }
 panel.Children.Add(finish);
 panel.Children.Add(_grid);
 grid.Children.Add(panel);
}

public async void New(Grid grid)
{
 _dialog = new Dialog(grid.XamlRoot, title);
 await SetSourcesAsync();
 Layout(grid);
 Start();
}

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

13

Step 15

Then from Solution Explorer for the Solution

double-click on MainWindow.xaml to see the

XAML for the Main Window.

Step 16

In the XAML for MainWindow.xaml there be some XAML for a StackPanel, this should be Removed by

removing the following:

Step 17

While still in the XAML for MainWindow.xaml above </Window>, type in the following XAML:

This XAML contains a Grid with a Viewbox which will scale a Grid. It has a Loaded event handler for New

which is also shared by the AppBarButton.

<StackPanel Orientation="Horizontal"
HorizontalAlignment="Center" VerticalAlignment="Center">
 <Button x:Name="myButton" Click="myButton_Click">Click Me</Button>
</StackPanel>

<Grid>
 <Viewbox>
 <Grid Margin="50" Name="Display"
 HorizontalAlignment="Center"
 VerticalAlignment="Center" Loaded="New"/>
 </Viewbox>
 <CommandBar VerticalAlignment="Bottom">
 <AppBarButton Icon="Page2" Label="New" Click="New"/>
 </CommandBar>
</Grid>

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

14

Step 18

Then, within Solution Explorer for the Solution

select the arrow next to MainWindow.xaml

then double-click on MainWindow.xaml.cs to

see the Code for the Main Window.

Step 19

In the Code for MainWindow.xaml.cs there be a Method of myButton_Click(...) this should be

Removed by removing the following:

Step 20

Once myButton_Click(...) has been removed, type in the following Code below the end of the

Constructor of public MainWindow() { ... }:

Here an Instance of the Class of Library is created then below this is the Method of New that will be used

with Event Handler from the XAML, this Method uses Arrow Syntax with the => for an Expression Body

which is useful when a Method only has one line.

private void myButton_Click(object sender, RoutedEventArgs e)
{
 myButton.Content = "Clicked";
}

private readonly Library _library = new();

private void New(object sender, RoutedEventArgs e) =>
 _library.New(Display);

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

15

Step 21

That completes the Windows App SDK

application. In Visual Studio 2022 from the

Toolbar select LuckyRacer (Package) to Start

the application.

Step 22

Once running you can tap on any Racer and then tap Race to begin racing and you can watch and see

which one wins, the one that reaches the Finish first will be the winner and if this is your Racer then you

win, if not you lose or select New to start a new game.

Step 23

To Exit the Windows App SDK application,

select the Close button from the top right of the

application as that concludes this Tutorial for

Windows App SDK from tutorialr.com!

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/
https://tutorialr.com/

