

Windows App SDK

Lucky Bingo

https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/
https://twitter.com/tutorialrdotcom
https://www.tutorialr.com/
https://www.tutorialr.com/tutorials/

1

Lucky Bingo

Lucky Bingo shows how you can create a bingo game and display the numbers and balls selected with a

control from NuGet using the Windows App SDK.

Step 1

Follow Setup and Start on how to get Setup and Install what you need for Visual Studio 2022 and

Windows App SDK.

In Windows 11 choose Start and then find or

search for Visual Studio 2022 and then select it.

Once Visual Studio 2022 has started select

Create a new project.

Then choose the Blank App, Packages (WinUI

in Desktop) and then select Next.

After that in Configure your new project type

in the Project name as LuckyBingo, then select a

Location and then select Create to start a new

Solution.

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

2

Step 2
Then in Visual Studio within Solution Explorer for the Solution, right click on the Project shown below

the Solution and then select Manage NuGet Packages…

Step 3

Then in the NuGet Package Manager from the Browse tab search for

Comentsys.Toolkit.WindowsAppSdk and then select Comentsys.Toolkit.WindowsAppSdk by

Comentsys as indicated and select Install

This will add the package for Comentsys.Toolkit.WindowsAppSdk to your Project. If you get the Preview

Changes screen saying Visual Studio is about to make changes to this solution. Click OK to proceed

with the changes listed below. You can read the message and then select OK to Install the package, then

you can close the tab for Nuget: LuckyBingo by selecting the x next to it.

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

3

Step 4

Then in Visual Studio within Solution Explorer for the Solution, right click on the Project shown below

the Solution and then select Add then New Item…

Step 5

Then in Add New Item from the C# Items list, select Code and then select Code File from the list next to

this, then type in the name of Library.cs and then Click on Add.

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

4

Step 6

You will now be in the View for the Code of Library.cs, within this first type the following Code:

The Class that has been defined in so far Library.cs has using amongst others for the package of

Comentsys.Toolkit.WindowsAppSdk. It also has colours to use for the bingo balls along with Variables to

be used with the in the game.

using Comentsys.Toolkit.WindowsAppSdk;
using Microsoft.UI;
using Microsoft.UI.Xaml;
using Microsoft.UI.Xaml.Controls;
using Microsoft.UI.Xaml.Media;
using System;
using System.Collections.Generic;
using System.Linq;
using Windows.UI;

public class Library
{
 private const string title = "Lucky Bingo";
 private const int size = 22;
 private const int balls = 90;
 private const int marks = 25;
 private static readonly Dictionary<int, Color> _style = new()
 {
 { 0, Colors.DarkViolet },
 { 10, Colors.DeepSkyBlue },
 { 20, Colors.Green },
 { 30, Colors.Gold },
 { 40, Colors.DarkOrange },
 { 50, Colors.RoyalBlue },
 { 60, Colors.Crimson },
 { 70, Colors.DarkCyan },
 { 80, Colors.Purple }
 };
 private readonly Random _random = new((int)DateTime.UtcNow.Ticks);

 private int _count;
 private int _house;
 private List<int> _balls;
 private List<int> _marks;
 private bool _over = false;
 private Dialog _dialog;
 private StackPanel _panel = new();

 // Choose, Piece & Add

 // Layout, Ball & Mark

 // New & Play

}

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

5

Step 7

While still in the Class for Library.cs and after the Comment of // Choose, Piece & Add type in the

following Methods:

Choose will be used to select a unique list of randomised numbers and Piece will be used to create the

bingo ball and numbers on the bingo card. Add will be used to position the bingo balls or bingo card

numbers using Piece.

private List<int> Choose(int minimum, int maximum, int total) =>
 Enumerable.Range(minimum, maximum)
 .OrderBy(r => _random.Next(minimum, maximum))
 .Take(total).ToList();

private Piece Piece(bool isBall, int value) => new()
{
 Width = size,
 Height = size,
 Value = $"{value}",
 IsSquare = !isBall,
 Opacity = isBall ? 0 : 1,
 Stroke = new SolidColorBrush(isBall ? _style
 .Where(w => value > w.Key)
 .Select(s => s.Value)
 .LastOrDefault() : Colors.Red),
 Name = isBall ? $"ball{value}" : $"mark{value}"
};

private void Add(ref Grid grid, bool isBall, int row, int column, int value)
{
 var counter = Piece(isBall, value);
 counter.SetValue(Grid.RowProperty, row);
 counter.SetValue(Grid.ColumnProperty, column);
 grid.Children.Add(counter);
}

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

6

Step 8

While still in the Class for Library.cs after the Comment of // Layout, Ball & Mark type in the

following Methods.

Layout will create the layout of either the set of bingo balls to be displayed that will be selected during the

game, or it will create the layout of the bingo numbers on the bingo card in the game. Ball and Mark will

be used to either show the balls for the bingo game selected or mark of the numbers on the bingo card as

they’re matched.

private Grid Layout(bool isBall, int rows, int columns, List<int> list)
{
 int count = 0;
 Grid grid = new()
 {
 Margin = new Thickness(5),
 VerticalAlignment = VerticalAlignment.Center
 };
 // Setup Grid
 for (int row = 0; row < rows; row++)
 {
 grid.RowDefinitions.Add(new RowDefinition());
 }
 for (int column = 0; column < columns; column++)
 {
 grid.ColumnDefinitions.Add(new ColumnDefinition());
 }
 // Setup Board
 for (int row = 0; row < rows; row++)
 {
 for (int column = 0; column < columns; column++)
 {
 Add(ref grid, isBall, row, column, list[count]);
 count++;
 }
 }
 return grid;
}

private void Ball(int value)
{
 UIElement element = (UIElement)_panel.FindName($"ball{value}");
 if (element != null) element.Opacity = 1;
}

private void Mark(int value)
{
 Piece piece = (Piece)_panel.FindName($"mark{value}");
 if (piece != null) piece.Fill = piece.Stroke;
}

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

7

Step 9

While still in the Class for Library.cs after the Comment of // New & Play type in the following Methods.

These Methods will be used to start the game with New which will generate the look-and-feel of the game

and Play will be used to proceed to the next selected bingo ball to allow you to proceed at your own pace

until all the numbers on the bingo card are matched.

public void New(StackPanel panel)
{
 _count = 0;
 _house = 0;
 _over = false;
 _panel = panel;
 _balls = Choose(1, balls, balls);
 _marks = Choose(1, balls, marks);
 _dialog = new Dialog(panel.XamlRoot, title);
 panel.Children.Clear();
 panel.Children.Add(Layout(true, 9, 10, _balls));
 panel.Children.Add(Layout(false, 5, 5, _marks));
}

public void Play(StackPanel panel)
{
 if (!panel.Children.Any()) New(panel);
 if (_count < balls && !_over)
 {
 var ball = _balls[_count];
 Ball(ball);
 if (_marks.Contains(ball))
 {
 _house++;
 Mark(ball);
 if (_house == marks)
 {
 _over = true;
 _dialog.Show($"Full House in {_count} Balls!");
 }
 }
 _count++;
 }
 else
 {
 _dialog.Show($"Game Over!");
 }
}

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

8

Step 10

Then from Solution Explorer for the Solution

double-click on MainWindow.xaml to see the

XAML for the Main Window.

Step 11

In the XAML for MainWindow.xaml there be some XAML for a StackPanel, this should be Removed by

removing the following:

Step 12

While still in the XAML for MainWindow.xaml above </Window>, type in the following XAML:

This XAML contains a Grid with a Viewbox which will Scale a StackPanel. It has a Loaded event handler

for New which is also shared by the AppBarButton for New and there is the AppBarButton for Play to pick

the next bingo ball.

<StackPanel Orientation="Horizontal"
HorizontalAlignment="Center" VerticalAlignment="Center">
 <Button x:Name="myButton" Click="myButton_Click">Click Me</Button>
</StackPanel>

<Grid>
 <Viewbox>
 <StackPanel Margin="50" Name="Display" Orientation="Horizontal"
 HorizontalAlignment="Center" VerticalAlignment="Center" Loaded="New"/>
 </Viewbox>
 <CommandBar VerticalAlignment="Bottom">
 <AppBarButton Icon="Page2" Label="New" Click="New"/>
 <AppBarButton Icon="Play" Label="Play" Click="Play"/>
 </CommandBar>
</Grid>

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

9

Step 13

Then, within Solution Explorer for the Solution

select the arrow next to MainWindow.xaml

then double-click on MainWindow.xaml.cs to

see the Code for the Main Window.

Step 14

In the Code for MainWindow.xaml.cs there be a Method of myButton_Click(...) this should be

Removed by removing the following:

Step 15

Once myButton_Click(...) has been removed, type in the following Code below the end of the

Constructor of public MainWindow() { ... }:

Here an Instance of the Class of Library is created then below this are the Methods for New and Play

that will be used with the Event Handlers from the XAML, this Method uses Arrow Syntax with the => for

an Expression Body which is useful when a Method only has one line.

private void myButton_Click(object sender, RoutedEventArgs e)
{
 myButton.Content = "Clicked";
}

private readonly Library _library = new();

private void New(object sender, RoutedEventArgs e) =>
 _library.New(Display);

private void Play(object sender, RoutedEventArgs e) =>
 _library.Play(Display);

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/

10

Step 16

That completes the Windows App SDK

application. In Visual Studio 2022 from the

Toolbar select LuckyBingo (Package) to Start

the application.

Step 17

Once running you should see the bingo card then you can click Play which will select a random bingo ball, if

this matches the bingo card it will be marked off, mark off all the numbers for a full house or you can select

New to restart the game.

Step 18

To Exit the Windows App SDK application,

select the Close button from the top right of the

application as that concludes this Tutorial for

Windows App SDK from tutorialr.com!

https://www.tutorialr.com/
https://www.tutorialr.com/
https://creativecommons.org/licenses/by-sa/4.0/
https://tutorialr.com/

