
Universal Windows Platform – Tic Tac Toe

1

Tic Tac Toe shows how to use a Grid and Emoji to implement the Game of Tic Tac Toe also

known as Noughts and Crosses

Step 1

Follow Setup and Start on how to Install

and/or Get Started with Visual Studio 2019 if

not already or in Windows 10 choose Start,

find and select Visual Studio 2019 then from

the Get started screen select Create a new

project

Then choose Blank App (Universal

Windows) and select Next and then in

Configure your new project enter the

Project name as TicTacToe and select Create

Finally, in New Universal Windows Platform

Project pick the Target version and

Minimum version to be at least Windows

10, version 1903 (10.0; Build 18362) and

then select OK

Target Version will control the most recent features of Windows 10 your application can use. To make sure you

always have the most recent version, check for any Notifications or Updates in Visual Studio 2019

Step 2

Choose Project then Add New Item... from

the Menu in Visual Studio 2019

Step 3

Then choose Code File from Add New Item

in Visual Studio 2019, enter the Name as

Library.cs and select Add

http://www.tutorialr.com/
http://creativecommons.org/licenses/by-sa/4.0/

Universal Windows Platform – Tic Tac Toe

2

Step 4

In the Code View of Library.cs will be displayed and in this the following should be entered:

using System;
using System.Threading.Tasks;
using Windows.UI.Popups;
using Windows.UI.Xaml;
using Windows.UI.Xaml.Controls;
using Windows.UI.Xaml.Media;

public class Library
{
 private const string title = "Tic Tac Toe";
 private const string blank = " ";
 private const string nought = "\U00002B55";
 private const string cross = "\U0000274C";
 private const int size = 3;

 private bool _won = false;
 private string _piece = blank;
 private string[,] _board = new string[size, size];

}

There are using statements to include necessary functionality. There are private const string for the

setup of the game and for the values that will represent the nought with and cross that makes up the game

of Tic Tac Toe. There are private members including the two-dimensional array _board which represents

what will appear in the game

Then below the private string[,] _board = new string[size, size]; line the following

methods should be entered:

private void Show(string content, string title)
{
 _ = new MessageDialog(content, title).ShowAsync();
}

private async Task<bool> ConfirmAsync(string content, string title,
 string ok, string cancel)
{
 bool result = false;
 MessageDialog dialog = new MessageDialog(content, title);
 dialog.Commands.Add(new UICommand(ok,
 new UICommandInvokedHandler((cmd) => result = true)));
 dialog.Commands.Add(new UICommand(cancel,
 new UICommandInvokedHandler((cmd) => result = false)));
 await dialog.ShowAsync();
 return result;
}

Show() is used to display a basic MessageDialog and ConfirmAsync(...) is used to display a

MessageDialog with UICommand for ok and cancel

http://www.tutorialr.com/
http://creativecommons.org/licenses/by-sa/4.0/

Universal Windows Platform – Tic Tac Toe

3

Next below private async Task<bool> ConfirmAsync { ... } enter the following methods:

private bool Winner()
{
 return (_board[0, 0] == _piece && _board[0, 1] ==
 _piece && _board[0, 2] == _piece) ||
 (_board[1, 0] == _piece && _board[1, 1] ==
 _piece && _board[1, 2] == _piece) ||
 (_board[2, 0] == _piece && _board[2, 1] ==
 _piece && _board[2, 2] == _piece) ||
 (_board[0, 0] == _piece && _board[1, 0] ==
 _piece && _board[2, 0] == _piece) ||
 (_board[0, 1] == _piece && _board[1, 1] ==
 _piece && _board[2, 1] == _piece) ||
 (_board[0, 2] == _piece && _board[1, 2] ==
 _piece && _board[2, 2] == _piece) ||
 (_board[0, 0] == _piece && _board[1, 1] ==
 _piece && _board[2, 2] == _piece) ||
 (_board[0, 2] == _piece && _board[1, 1] ==
 _piece && _board[2, 0] == _piece);
}

private bool Drawn()
{
 return _board[0, 0] != blank && _board[0, 1] !=
 blank && _board[0, 2] != blank &&
 _board[1, 0] != blank && _board[1, 1] !=
 blank && _board[1, 2] != blank &&
 _board[2, 0] != blank && _board[2, 1] !=
 blank && _board[2, 2] != blank;
}

Winner() is used to determine if a player has won and Drawn() is used to determine if the game is a draw

Then after private bool Drawn() { ... } method the following method should be entered:

private Viewbox Piece()
{
 TextBlock textblock = new TextBlock()
 {
 Text = _piece,
 IsColorFontEnabled = true,
 TextLineBounds = TextLineBounds.Tight,
 FontFamily = new FontFamily("Segoe UI Emoji"),
 HorizontalTextAlignment = TextAlignment.Center
 };
 return new Viewbox()
 {
 Child = textblock
 };
}

Piece() is used to return a Viewbox which contains a TextBlock which will contain the Emoji value of the

current player of either nought or cross

http://www.tutorialr.com/
http://creativecommons.org/licenses/by-sa/4.0/

Universal Windows Platform – Tic Tac Toe

4

Next after the private Viewbox Piece() { ... } method the following method should be

entered:

private void Add(ref Grid grid, int row, int column)
{
 Button button = new Button()
 {
 Width = 75,
 Height = 75,
 Margin = new Thickness(10),
 Style = (Style)Application.Current.Resources
 ["ButtonRevealStyle"]
 };
 button.Click += (object sender, RoutedEventArgs e) =>
 {
 if (!_won)
 {
 button = (Button)sender;
 if (button.Content == null)
 {
 button.Content = Piece();
 _board[(int)button.GetValue(Grid.RowProperty),
 (int)button.GetValue(Grid.ColumnProperty)] = _piece;
 }
 if (Winner())
 {
 _won = true;
 Show($"{_piece} wins!", title);
 }
 else if (Drawn())
 {
 Show("Draw!", title);
 }
 else
 {
 // Swap Players
 _piece = (_piece == cross ? nought : cross);
 }
 }
 else
 {
 Show("Game Over!", title);
 }
 };
 button.SetValue(Grid.ColumnProperty, column);
 button.SetValue(Grid.RowProperty, row);
 grid.Children.Add(button);
}

The Add(...) method is used to add a Button to a Grid to contain each part of the game and to check if

the game has been won, a draw, to swap the players or if the game is over

http://www.tutorialr.com/
http://creativecommons.org/licenses/by-sa/4.0/

Universal Windows Platform – Tic Tac Toe

5

Next after the Add(...) { ... } method the following method should be entered:

private void Layout(ref Grid grid)
{
 grid.Children.Clear();
 grid.RowDefinitions.Clear();
 grid.ColumnDefinitions.Clear();
 // Setup Grid
 for (int index = 0; (index < size); index++)
 {
 grid.RowDefinitions.Add(new RowDefinition());
 grid.ColumnDefinitions.Add(new ColumnDefinition());
 }
 // Setup Board
 for (int row = 0; (row < size); row++)
 {
 for (int column = 0; (column < size); column++)
 {
 Add(ref grid, row, column);
 _board[row, column] = blank;
 }
 }
}

Layout(...) configures a Grid and sets up the layout of the game using the Add(...) method and _board

Finally after the private void Layout(...) { ... } method the following public method

should be entered:

public async void New(Grid grid)
{
 Layout(ref grid);
 _won = false;
 _piece = await ConfirmAsync("Who goes First?", title,
 nought, cross) ? nought : cross;
}

New(...) will setup the layout of the Grid using the Layout method and will start the game and ask Who

goes First? using the ConfirmAsync(...) method

http://www.tutorialr.com/
http://creativecommons.org/licenses/by-sa/4.0/

Universal Windows Platform – Tic Tac Toe

6

Step 5

In the Solution Explorer of Visual Studio

2019 select MainPage.xaml

Step 6

Choose View then Designer from the Menu

in Visual Studio 2019

Step 7

In the Design View and XAML View of Visual Studio 2019 will be displayed, and in this between

the Grid and /Grid elements enter the following XAML:

<Viewbox>
 <Grid Margin="50" Name="Display"
 HorizontalAlignment="Center"
 VerticalAlignment="Center"/>
</Viewbox>
<CommandBar VerticalAlignment="Bottom">
 <AppBarButton Icon="Page2" Label="New" Click="New_Click"/>
</CommandBar>

The first block of XAML the main user interface features a Viewbox to contain a Grid which will display the

game. The second block of XAML is the CommandBar which contains New to start a new game

Step 8

Choose View then Code from the Menu in

Visual Studio 2019

http://www.tutorialr.com/
http://creativecommons.org/licenses/by-sa/4.0/

Universal Windows Platform – Tic Tac Toe

7

Step 9

Once in the Code View, below the end of public MainPage() { ... } the following Code

should be entered:

Library library = new Library();

private void New_Click(object sender, RoutedEventArgs e)
{
 library.New(Display);
}

Below the MainPage(...) method an instance of the Library Class is created. In the New_Click(...) Event

handler will call the New(...) method in the Library class

Step 10

That completes the Universal Windows

Platform Application, in Visual Studio 2019

select Local Machine to run the Application

Step 11

Once the Application is running you can then click the New Button, then choose X or O then you

can start playing the game

Step 12

To Exit the Application, select the Close button

in the top right of the Application

http://www.tutorialr.com/
http://creativecommons.org/licenses/by-sa/4.0/

