
Universal Windows Platform – Sound Game

1

Sound Game shows how to create a simple game to play sounds using a MediaElement with a

provided frequency as an audio stream

Step 1

Follow Setup and Start on how to Install

and/or Get Started with Visual Studio 2019 if

not already or in Windows 10 choose Start,

find and select Visual Studio 2019 then from

the Get started screen select Create a new

project

Then choose Blank App (Universal

Windows) and select Next and then in

Configure your new project enter the

Project name as SoundGame and select

Create

Finally, in New Universal Windows Platform

Project pick the Target version and

Minimum version to be at least Windows

10, version 1903 (10.0; Build 18362) and

then select OK

Target Version will control the most recent features of Windows 10 your application can use. To make sure you

always have the most recent version, check for any Notifications or Updates in Visual Studio 2019

Step 2

Choose Project then Add New Item... from

the Menu in Visual Studio 2019

Step 3

Then choose Code File from Add New Item

in Visual Studio 2019, enter the Name as

Library.cs and select Add

http://www.tutorialr.com/
http://creativecommons.org/licenses/by-sa/4.0/

Universal Windows Platform – Sound Game

2

Step 4

In the Code View of Library.cs will be displayed and in this the following should be entered:

using System;
using System.Collections.Generic;
using System.IO;
using System.Linq;
using Windows.Storage.Streams;
using Windows.UI;
using Windows.UI.Xaml;
using Windows.UI.Xaml.Controls;
using Windows.UI.Xaml.Media;

public class Library
{
 private const short tracks = 1;
 private const short formatType = 1;
 private const short bitsPerSample = 16;
 private const int headerSize = 8;
 private const int formatChunkSize = 16;
 private const int samplesPerSecond = 44100;
 private const short frameSize =
 tracks * ((bitsPerSample + 7) / 8);
 private const int bytesPerSecond =
 samplesPerSecond * frameSize;
 private const int waveSize = 4;
 private const int riff = 0x46464952;
 private const int wave = 0x45564157;
 private const int data = 0x61746164;
 private const int format = 0x20746D66;
 private const int samples = 88200 * 4;
 private const int dataChunkSize =
 samples * frameSize;
 private const int fileSize =
 waveSize + headerSize + formatChunkSize +
 headerSize + dataChunkSize;
 private const string mime = "audio/wav";

 private readonly Dictionary<string, double>
 _notes = new Dictionary<string, double>()
 {
 { "C", 261.6 }, { "C#", 277.2 }, { "D", 293.7 },
 { "D#", 311.1 } , { "E", 329.6 }, { "F", 349.2 },
 { "F#", 370.0 }, { "G", 392.0 }, { "G#", 415.3 },
 { "A", 440.0 }, { "A#", 466.2 }, { "B", 493.9 }
 };
 private readonly MediaElement _playback = new MediaElement();
 private readonly Color _accent =
 (Color)Application.Current.Resources["SystemAccentColor"];

}

http://www.tutorialr.com/
http://creativecommons.org/licenses/by-sa/4.0/

Universal Windows Platform – Sound Game

3

There are using statements to include necessary functionality and private const int that defind the

elements to make up the sounds to be played, there's a Dictionary<string, double> for each note to be

played and a MediaElement to allow playback of the sounds

Then below the private readonly Color _accent =

(Color)Application.Current.Resources["SystemAccentColor"]; line the following

method should be entered:

private void Play(double note)
{
 IRandomAccessStream stream = new InMemoryRandomAccessStream();
 BinaryWriter writer = new BinaryWriter(stream.AsStream());
 double frequency = note * 1.5;
 writer.Write(riff);
 writer.Write(fileSize);
 writer.Write(wave);
 writer.Write(format);
 writer.Write(formatChunkSize);
 writer.Write(formatType);
 writer.Write(tracks);
 writer.Write(samplesPerSecond);
 writer.Write(bytesPerSecond);
 writer.Write(frameSize);
 writer.Write(bitsPerSample);
 writer.Write(data);
 writer.Write(dataChunkSize);
 for (int index = 0; index < samples / 4; index++)
 {
 double time = index / (double)samplesPerSecond;
 short sample = (short)(10000 *
 Math.Sin(time * frequency * 2.0 * Math.PI));
 writer.Write(sample);
 }
 stream.Seek(0);
 _playback.SetSource(stream, mime);
 _playback.Play();

}

Play method is used to play a musical note with a MediaElement and an InMemoryRandomAccessStream

which will be used to help create the audio with a BinaryWriter to create a wave audio stream that will be

written to with the given frequency to produce the samples that will create the required musical note

http://www.tutorialr.com/
http://creativecommons.org/licenses/by-sa/4.0/

Universal Windows Platform – Sound Game

4

Next below the private void Play(...) { ... } method the following method should be

entered:

private void Add(Grid grid, int column)
{
 Button button = new Button()
 {
 Width = 20,
 Height = 80,
 FontSize = 10,
 Margin = new Thickness(5),
 Padding = new Thickness(0),
 Content = _notes.Keys.ElementAt(column),
 Background = new SolidColorBrush(_accent),
 Foreground = new SolidColorBrush(Colors.White),
 Style = (Style)Application.Current.Resources
 ["ButtonRevealStyle"]
 };
 button.Click += (object sender, RoutedEventArgs e) =>
 {
 button = (Button)sender;
 int note = Grid.GetColumn(button);
 Play(_notes[_notes.Keys.ElementAt(note)]);
 };
 button.SetValue(Grid.ColumnProperty, column);
 grid.Children.Add(button);
}

Add method will create a Button and set the properties for this and when clicked it will trigger the Play

method

Then below the private void Add(...) { ... } method the following method should be

entered:

private void Layout(Grid Grid)
{
 Grid.Children.Clear();
 Grid.RowDefinitions.Clear();
 Grid.ColumnDefinitions.Clear();
 // Setup Grid
 for (int Column = 0; (Column < _notes.Count); Column++)
 {
 Grid.ColumnDefinitions.Add(new ColumnDefinition());
 Add(Grid, Column);
 }
}

Layout method is used to create the look-and-feel using a Grid by calling the Add method

http://www.tutorialr.com/
http://creativecommons.org/licenses/by-sa/4.0/

Universal Windows Platform – Sound Game

5

Finally after the private void Layout(...) { ... } method the following public method

should be entered:

public void New(Grid grid)
{
 Layout(grid);
}

New method will setup and start playing the game by calling the Layout method

Step 5

In the Solution Explorer of Visual Studio

2019 select MainPage.xaml

Step 6

Choose View then Designer from the Menu

in Visual Studio 2019

http://www.tutorialr.com/
http://creativecommons.org/licenses/by-sa/4.0/

Universal Windows Platform – Sound Game

6

Step 7

In the Design View and XAML View of Visual Studio 2019 will be displayed, and in this between

the Grid and /Grid elements enter the following XAML:

<Viewbox>
 <Grid Margin="50" Name="Display"
 HorizontalAlignment="Center"
 VerticalAlignment="Center"/>
</Viewbox>
<CommandBar VerticalAlignment="Bottom">
 <AppBarButton Icon="Page2" Label="New" Click="New_Click"/>
</CommandBar>

The first block of XAML the main user interface features a Grid to represent the game and the second block of

XAML is the CommandBar which contains New to setup and start the game

Step 8

Choose View then Code from the Menu in

Visual Studio 2019

Step 9

Once in the Code View, below the end of public MainPage() { ... } the following Code

should be entered:

Library library = new Library();

private void New_Click(object sender, RoutedEventArgs e)
{
 library.New(Display);
}

Below the MainPage method an instance of the Library class is created. In the New_Click(...) Event

handler will setup and play the game using the New method in the Library class

http://www.tutorialr.com/
http://creativecommons.org/licenses/by-sa/4.0/

Universal Windows Platform – Sound Game

7

Step 10

That completes the Universal Windows

Platform Application, in Visual Studio 2019

select Local Machine to run the Application

Step 11

Once the Application is running use New to start then can play sounds by clicking the buttons

Step 12

To Exit the Application, select the Close button

in the top right of the Application

http://www.tutorialr.com/
http://creativecommons.org/licenses/by-sa/4.0/

