
Universal Windows Platform – Photo Rotate

1

Photo Rotate shows how to use BitmapTransform and related properties and methods to

create a simple image-rotating application

Step 1

Follow Setup and Start on how to Install

and/or Get Started with Visual Studio 2019 if

not already or in Windows 10 choose Start,

find and select Visual Studio 2019 then from

the Get started screen select Create a new

project

Then choose Blank App (Universal

Windows) and select Next and then in

Configure your new project enter the

Project name as PhotoRotate and select

Create

Finally, in New Universal Windows Platform

Project pick the Target version and

Minimum version to be at least Windows

10, version 1903 (10.0; Build 18362) and

then select OK

Target Version will control the most recent features of Windows 10 your application can use. To make sure you

always have the most recent version, check for any Notifications or Updates in Visual Studio 2019

Step 2

Choose Project then Add New Item... from

the Menu in Visual Studio 2019

Step 3

Then choose Code File from Add New Item

in Visual Studio 2019, enter the Name as

Library.cs and select Add

http://www.tutorialr.com
http://creativecommons.org/licenses/by-sa/4.0/

Universal Windows Platform – Photo Rotate

2

Step 4

In the Code View of Library.cs will be displayed and in this the following should be entered:

using System;
using System.Collections.Generic;
using System.IO;
using System.Linq;
using System.Runtime.InteropServices.WindowsRuntime;
using System.Threading.Tasks;
using Windows.Graphics.Imaging;
using Windows.Storage;
using Windows.Storage.Pickers;
using Windows.Storage.Streams;
using Windows.UI.Xaml.Controls;
using Windows.UI.Xaml.Media.Imaging;

public class Library
{
 private int _angle;
 private StorageFile _file;
 private WriteableBitmap _bitmap;

 private readonly Dictionary<int, BitmapRotation> rotation_angles =
 new Dictionary<int, BitmapRotation>()
 {
 { 0, BitmapRotation.None },
 { 90, BitmapRotation.Clockwise90Degrees },
 { 180, BitmapRotation.Clockwise180Degrees },
 { 270, BitmapRotation.Clockwise270Degrees },
 { 360, BitmapRotation.None }
 };

 private const string file_extension = ".jpg";

}

There are using statements to include necessary functionality. Also, there are an int to store the rotation

angle, then a StorageFile to get or set the File of the photo and a Dictionary to store the supported

rotation angles

http://www.tutorialr.com
http://creativecommons.org/licenses/by-sa/4.0/

Universal Windows Platform – Photo Rotate

3

Then below the private const string file_extension = ".jpg"; line the following

method should be entered:

private async Task<WriteableBitmap> ReadAsync()
{
 using (IRandomAccessStream stream = await
 _file.OpenAsync(FileAccessMode.ReadWrite))
 {
 BitmapDecoder decoder = await BitmapDecoder
 .CreateAsync(BitmapDecoder.JpegDecoderId, stream);
 uint width = decoder.PixelWidth;
 uint height = decoder.PixelHeight;
 if (_angle % 180 != 0)
 {
 width = decoder.PixelHeight;
 height = decoder.PixelWidth;
 }
 BitmapTransform transform = new BitmapTransform
 {
 Rotation = rotation_angles[_angle]
 };
 PixelDataProvider data = await decoder.GetPixelDataAsync(
 BitmapPixelFormat.Bgra8, BitmapAlphaMode.Ignore, transform,
 ExifOrientationMode.IgnoreExifOrientation,
 ColorManagementMode.DoNotColorManage);
 _bitmap = new WriteableBitmap((int)width, (int)height);
 using (Stream pixels = _bitmap.PixelBuffer.AsStream())
 {
 pixels.Write(data.DetachPixelData(), 0, (int)pixels.Length);
 }
 }
 return _bitmap;
}

ReadAsync() is used to get an IRandomAccessStream from the StorageFile and get the image with a

BitmapDecoder. The photo is then manipulated to introduce a transformation – in this case the rotation with

the PixelDataProvider and this information is then written back to the File to produce the rotated image

http://www.tutorialr.com
http://creativecommons.org/licenses/by-sa/4.0/

Universal Windows Platform – Photo Rotate

4

Next below the private void ReadAsync() { ... } method the following method should be

entered:

private async void WriteAsync()
{
 using (IRandomAccessStream stream = await
 _file.OpenAsync(FileAccessMode.ReadWrite))
 {
 BitmapEncoder encoder = await BitmapEncoder.CreateAsync
 (BitmapEncoder.JpegEncoderId, stream);
 encoder.SetPixelData(BitmapPixelFormat.Bgra8,
 BitmapAlphaMode.Ignore,
 (uint)_bitmap.PixelWidth, (uint)_bitmap.PixelHeight,
 96.0, 96.0, _bitmap.PixelBuffer.ToArray());
 await encoder.FlushAsync();
 }
}

WriteAsync() is used encode any resulting image as the correct format with BitmapEncoder set to the

settings optimised for a photo

Then below the private void WriteAsync() { ... } method the following public method

should be entered:

public async void OpenAsync(Image display)
{
 _angle = 0;
 try
 {
 FileOpenPicker picker = new FileOpenPicker
 {
 SuggestedStartLocation = PickerLocationId.PicturesLibrary
 };
 picker.FileTypeFilter.Add(file_extension);
 _file = await picker.PickSingleFileAsync();
 if (_file != null)
 {
 display.Source = await ReadAsync();
 }
 }
 catch
 {

 }
}

OpenAsync is used to get a photo with a FileOpenPicker and calls the ReadAsync method* to get the file

and set the Source of the Image passed in

http://www.tutorialr.com
http://creativecommons.org/licenses/by-sa/4.0/

Universal Windows Platform – Photo Rotate

5

Next below the private void OpenAsync(...) { ... } method the following public

method should be entered:

public async void SaveAsync()
{
 try
 {
 FileSavePicker picker = new FileSavePicker
 {
 DefaultFileExtension = file_extension,
 SuggestedFileName = "Picture",
 SuggestedStartLocation = PickerLocationId.PicturesLibrary
 };
 picker.FileTypeChoices.Add("Picture",
 new List<string>() { file_extension });
 _file = await picker.PickSaveFileAsync();
 if (_file != null)
 {
 WriteAsync();
 }
 }
 catch
 {

 }
}

SaveAsync is used to store a photo after it has be rotated with the FileSavePicker used along with the

WriteAsync Method

Finally after private void SaveAsync() { ... } method the following public method

should be entered:

public async void RotateAsync(Image display)
{
 if (_angle == 360) _angle = 0;
 _angle += 90;
 display.Source = await ReadAsync();
}

RotateAsync is used to rotate the image and increments the value to be used by 90 degrees each time it is

called up to 360 degrees when it is reset, the image is then obtained again with this rotation using the

ReadAsync Method

http://www.tutorialr.com
http://creativecommons.org/licenses/by-sa/4.0/

Universal Windows Platform – Photo Rotate

6

Step 5

In the Solution Explorer of Visual Studio

2019 select MainPage.xaml

Step 6

Choose View then Designer from the Menu

in Visual Studio 2019

Step 7

In the Design View and XAML View of Visual Studio 2019 will be displayed, and in this between

the Grid and /Grid elements enter the following XAML:

<ScrollViewer VerticalScrollBarVisibility="Auto"
HorizontalScrollBarVisibility="Auto" ZoomMode="Enabled">
 <Image Name="Display"/>
</ScrollViewer>
<CommandBar VerticalAlignment="Bottom">
 <AppBarButton Icon="OpenFile" Label="Open" Click="Open_Click"/>
 <AppBarButton Icon="Save" Label="Save" Click="Save_Click"/>
 <AppBarButton Icon="Rotate" Label="Rotate" Click="Rotate_Click"/>
</CommandBar>

The first block of XAML the main user interface and features a ScrollViewer containing an Image Control that

can be zoomed in or out of so you can view the image at any needed size with pinch-to-zoom or scroll-wheel.

The second block of XAML is is the CommandBar which contains Open – to read and show a photo in the

Image Control and Save to write a photo after it has been rotated and finally Rotate to perform the rotation

Step 8

Choose View then Code from the Menu in

Visual Studio 2019

http://www.tutorialr.com
http://creativecommons.org/licenses/by-sa/4.0/

Universal Windows Platform – Photo Rotate

7

Step 9

Once in the Code View, below the end of public MainPage() { ... } the following Code

should be entered:

Library library = new Library();

private void Open_Click(object sender, RoutedEventArgs e)
{
 library.OpenAsync(Display);
}

private void Save_Click(object sender, RoutedEventArgs e)
{
 library.SaveAsync();
}

private void Rotate_Click(object sender, RoutedEventArgs e)
{
 library.RotateAsync(Display);
}

Below the MainPage(...) method an instance of the Library Class is created. Open_Click(...) event handler

is used to call the OpenAsync method to get a photo. Save_Click(...) calls SaveAsync which is used to

store a photo and Rotate_Click(...) calls RotateAsync and is used to perform the rotation of the photo

http://www.tutorialr.com
http://creativecommons.org/licenses/by-sa/4.0/

Universal Windows Platform – Photo Rotate

8

Step 10

That completes the Universal Windows

Platform Application, in Visual Studio 2019

select Local Machine to run the Application

Step 11

Once the Application running you can use Open to select a Photo to Rotate after which you can

then Save the rotated photo

Step 12

To Exit the Application, select the Close button

in the top right of the Application

http://www.tutorialr.com
http://creativecommons.org/licenses/by-sa/4.0/

