Y Tutorialrcom

micro:bit

http://www.tutorialr.com/

About & Start

About

micro:bit is a pocket-sized computer that you can code, customise and control to bring all sorts of
cool creations to life from robots to musical instruments. micro:bit measures 4cm by 5cm and has
25 red LEDs to display messages, two programmable buttons for uses such as controlling games or
skipping songs in playlist, it can detect motion and tell which direction it is pointing and can use
Bluetooth to communicate with other devices and the Internet.

Micro USB i FRONT
Drag-and-drop programming

MSC, UART, CMSIS-DAP, webUSB

5x5 LED Matrix User buttons

Digital/analog 1O

Muxable to SPI, UART, 12C External supply

Pads for crocodile clips Regulated 3.3V in or battery out

Holes for banana plugs

|— Edge Connector

Battery connector
JST connection for 3V

Reset Button

2.4GHZ Antenna

Bluetooth low energy
Broadcast radio

Nordic nRF51822

" b RL
= -
BPROCESSOR

Motion Sensor —~<CaccriERomETER NXP KL26Z

ST LSM303AGR PINS microc bit USB Interface chip

(R (8

1 < Tutorialrcom @@@

http://www.tutorialr.com/
http://creativecommons.org/licenses/by-sa/4.0/

Start

To get started with micro:bit and to find out more about it visit microbit.org

& micro:bit Let'sCode Ideas Meet microbit Teach Buy English @

GET CREATIVE
GET CONNECTED

GET.CODING

micro:bit is a tiny programmable
computer deﬂgned to make
~'learnmg and teaching easy and fun!

I'm a teacher I've got my micro:bit

How do | use micro:bit in school?

What do | need to get started? ’

;

Ideas Meet micro:bit Teach Buy English@

Did you know that you can code your BBC micro:bit using Blocks, JavaScript, and Python?

If you have never used a BBC micro:bit try our Quick Start Guide.

MakeCode Editor

The MakeCode editor provided by Microsoft
makes it easy to program your micro:bit with
blocks and JavaScript. Find out more about
the latest features in MakeCode.

If you're having issues accessing the editor, or
want to use it offline, check out the FAQ.

Then from the Let’s Code page select the Let’s Code button in the MakeCode Editor section

2 < Tutorialrcom @@@

http://www.tutorialr.com/
http://creativecommons.org/licenses/by-sa/4.0/
http://microbit.org/

Finally, in the MakeCode Editor page select the New Project button and then select the JavaScript
tab

Omicro:bit A Home & Share &k Blocks © o) m Microsof

basic.forever(function () {

£52 Basic

1)

BPwn R

® Input
@ Music
© Lled

il Radio
C' Loops
33 Logic

= Variables

E Math

Explorer ?
| v sovnces

& Download Untitled

To run an example on a real micro:bit select the Download button and follow the instructions

O micro:bit @ Home o share Microsoft

basic.forever(function () {

Search... Q

1

2
22 Basic 31)
® Input e
@ Music

s | Y
GConnect the micro:bit to your °Move the .hex file to the micro:bit
£ computer with a USB cable Locate the downloaded .hex file and drag it
Use the microUSB port on the top of the to the MICROBIT drive
micro:bit

Help 2

ith microbit-Unti ?
< What do you want Fo do. with microbit-Untitled.hex (615 KB)? Oren Save R Cancal x
From: makecode.microbit.org

3 < Tutorialrcom @@@

http://www.tutorialr.com/
http://creativecommons.org/licenses/by-sa/4.0/

Hello World

Step 1

Go to microbit.org, then select the Let’s Code
option, next in the MakeCode Editor section
select the Let’s Code button, finally select the
New Project button and select the JavaScript
tab

& oot B o

Step 2
With the JavaScript tab selected in the MakeCode Editor you should see the following code:

basic.forever(() => {

})

Within this you should type the following code:

basic.showString("Hello World!"™)

Step 3

Once done the MakeCode Editor should appear as follows:

@micro:bit @ Home o Share & Blocks

basic.forever(function () {
basic.showString("Hello World!")
b))

Search Q
252 Basic

@ Input

@ Music

© Led

W

.all Radio
C' Loops
2 Logic
= Variables

B Math

Explorer >
I v rovnces

& Download Untitled H

4 < Tutorialrcom @@@

http://www.tutorialr.com/
http://creativecommons.org/licenses/by-sa/4.0/
http://microbit.org/

Step 4

In the MakeCode Editor you can also select the Blocks tab, which is an easy to use drag-and-drop

style of programming for younger or less experienced coders

O microbit @& Home «§ share {} JavaSeript & Microsoff

£ Basic
® Input
@ Music
© Led

il Radio
C' Loops
3G Logic

= Variables

B Math

I v Advanced

& Download Untied E

Step 5
That completes the micro:bit example, if not
> done already you can select the Start the
simulator button
Step 6

When running on the virtual micro:bit the LEDs will scroll through the text Hello World

You can also run the example on an actual micro:bit by connecting one to your computer and then
choosing the Download option in the MakeCode Editor to download the example to your
computer. Once downloaded you can then copy the .hex file from where you've downloaded it to
the micro:bit the same way you'd copy to another drive or device connected to your computer,
then once the example has been copied to the micro:bit it should start automatically.

5 < Tutorialrcom @@@

http://www.tutorialr.com/
http://creativecommons.org/licenses/by-sa/4.0/

Show Message

Go to microbit.org, then select the Let’s Code
option, next in the MakeCode Editor section
select the Let’s Code button, finally select the
New Project button and select the JavaScript
tab

n s a)
EEo:E E

< =
£z

& oot B o

Step 2
With the JavaScript tab selected in the MakeCode Editor you should remove the following code:

basic.forever(() => {

})

Then in the MakeCode Editor you should enter the following code:

const items: string[] = [
“A", "B", "C", "D", "E", "F", "G", "H", "I", "3%, "K", "L", "M",
"N".’ "O"J "P".’ "Q"J "R".’ "S") "T".’ "U"J "V"J "W"J "X"J "Y"J "Z"J
"@"J "1") "2"J "3") "4") J) J J J "!") "?") e

15

const means a value that doesn’t change and this is set to a string[] called items which is a special
kind of value known as an array, which is a list of values, these can be identified with the use of a set
of two square brackets, here it is a list of string. To get a particular value from an array you need an
index, which is the position in the array, this starts from 0 for the first item and 1 for second and so
on, so for example to get the fifth value from the array you'd use the index of 4.

6 < Tutorialrcom @@@

http://www.tutorialr.com/
http://creativecommons.org/licenses/by-sa/4.0/
http://microbit.org/

Step 3
While still in the JavaScript tab of the MakeCode Editor, below the code entered in the previous
step, you should enter the following code:

let counter: number = 0;
let editing: boolean = false;

let display: string = "";

let message: string = 5

let helps create another kind of value, these can change and are known as variables which can
contain a single value, there are different types of value used here. First there’s a number which can
store a whole number such as 0, 1, 2, 3 and so on. Then there’s a boolean this can be either true or
false and here is set to false. Then there are two strings, and these can be any kind of text, they have

been set to an empty string which is "".

Step 4
Again, while still in the JavaScript tab, below the code entered in the previous step, you should
enter the following code:

function show(item: string) {
basic.showString(item)

}

function is a block of code that you can use many times to do the same thing, they can also take in
values known as parameters to use in the function. The parameter used here is called item and it is
a string. The function will use this value to use or call the basic.showString built in function to
display text on the micro:bit using the LEDs on the front.

7 <Y Tutorialrcom @@@

http://www.tutorialr.com/
http://creativecommons.org/licenses/by-sa/4.0/

Step 5
Once again while still in the JavaScript tab, below the code entered in the previous step, you should
enter the following code:

input.onButtonPressed(Button.A, () => {
if (counter == items.length) {
counter = 0;
¥
display = items[counter];
counter++;

1)

input.onButtonPressed(Button.B, () => {
message += display;
show("+");

1)

input.onButtonPressed(Button.AB, () => {
editing = lediting;
})

input are things that happen, also known as events, when you do something with the micro:bit,
they are as follows:

1. The first input is when you press the A button on the micro:bit and when you do it will check
the counter to see if it is the same value as the size or length of the list string[] array, then it
will set display to be the item from the array with the same index as the counter — if this is
the first item it will have the value "A", if second it will be "B" and so on, the line counter+ +
will increase the value of counter by one for the next item.

2. The second input is when you press the B button on the micro:bit and when you do the
message + = display will add the whatever is in the display value onto the end of the
message value, it will display a "+" on the micro:bit by using the function show briefly
before continuing.

3. The third input is when you press both the A and B buttons on the micro:bit at the same
time editing = !editing will set the value of editing to the opposite of its value, this is what
the ! does which is known as not.

8 <Y Tutorialrcom @@@

http://www.tutorialr.com/
http://creativecommons.org/licenses/by-sa/4.0/

Step 6
Finally, while still in the JavaScript tab, below the code entered in the previous step, you should
enter the following code:

basic.forever(() => {
if (editing) {

show(display);
}
else {
show(message);
}

})

basic.forever is a function which will repeat, or loop, forever as long as the example is running on
the micro:bit. Inside this function it will check the editing value in an if statement, when it is true
the first part of the code will happen, this will show the display value on the micro:bit and in the
second part, when editing is false it will show the message value on the micro:bit instead.

Step 7/

Once done the MakeCode Editor should appear as follows:

(O micro:bit @& Home «§ share {} Javaseript

Search, o 1 const items: string[] = [
2 "a", "B", "C", "D", "E", "F", "G", "H", "I J K
£ Basic 3 "N", "o", "P", "Q", "R", "s", "T", "u", "V", "W", "X", "Y",
@ Input 4 "g", "1i", "2", "3", "4", "s", "&", "7", "8 9 ! 2
5 1
@ Music 6
© Led 7 let (m:mFer': number = @;
8 let editing: boolean = false;
.all Radio 9 let display: string = "";
C Loops 18 let message: string = "";
11
2 Logic 12 function show(item: string) {
_ 13 basic.showstring(item)
= Variables 12}
E Math 15
16 input.onButtonPressed(Button.A, () => {
I Advanced 17 if (counter == items.length) {
18 counter = @;
19 }
28 display = items[counter];
21 counters+;
22 1)
23
24 input.onButtonPressed(Button.B, () => {
25 message += display;
26 show("+");
27 1)
28

29 input.onButtonPressed(Button.AB, () => {

Step 8

That completes the micro:bit example, if not
> done already you can select the Start the
simulator button to start the example

9 < Tutorialrcom @@@

http://www.tutorialr.com/
http://creativecommons.org/licenses/by-sa/4.0/

Step 9

When running on the virtual micro:bit you can create a message on the LEDs by pressing the A+B
button on the micro:bit then press the A button to cycle through the list of letters and numbers
and then press B button to add the letter or number to the list to be displayed, you can keep doing
this to add more letters and numbers then once the message is complete press A+B again to display

the full message.

You can also run the example on an actual micro:bit by connecting one to your computer and then
choosing the Download option in the MakeCode Editor to download the example to your
computer. Once downloaded you can then copy the .hex file from where you've downloaded it to
the micro:bit the same way you'd copy to another drive or device connected to your computer,
then once the example has been copied to the micro:bit it should start automatically.

10 <Y Tutorialrcom @@@

http://www.tutorialr.com/
http://creativecommons.org/licenses/by-sa/4.0/

Shaking Dice

Go to microbit.org, then select the Let’s Code
option, next in the MakeCode Editor section
select the Let’s Code button, finally select the
New Project button and select the JavaScript
tab

n s a)
EEo:E E

< =
£z

& oot B o

Step 2
With the JavaScript tab selected in the MakeCode Editor you should remove the following code:

basic.forever(() => {

})

Then in the MakeCode Editor you should enter the following code:

const faces: number[][] =

[
[@J @.’ @J
9, 1, 0,
@, 0, 0],
[1) @J @)
9, 9, 0,
@) @J 1])
[1, 0, 0,
o, 1, O,
@) @J 1])
[1J @.’ 1J
0, 0, 0,
1J @.’ 1].’
[1) @J 1)
0) 1.’ @)
1) @) 1])
[1) @.’ 1)
1, o, 1,
1, 0, 1]
1;

1 < Tutorialrcom @@@

http://www.tutorialr.com/
http://creativecommons.org/licenses/by-sa/4.0/
http://microbit.org/

const means a value that doesn’t change and this is set to a number[][] called faces which is special
kind of value known as an array, which is a list of items, however is extra special as it is a list of lists
of those items as well. These can be identified with the use of two sets of two square brackets, here
it is a list of number, where each of those lists is also in a list. Don't worry if that sounds confusing —
imagine it like a grid where you can go up and down and side to side, when you get an item from
this array with an index, or position, this item is also an array — that's the up and down part, and
when you get an item from that array item with an index or position — that's the side to side part.

Step 3
While still in the JavaScript tab of the MakeCode Editor, below the code entered in the previous
step, you should enter the following code:

let roll: number = 0;

let helps create another kind of value, these can change and are known as variables which can
contain a single value. Here there’s a number which can store a whole number such as 0, 1, 2, 3 and
so on, it is called roll and is set to 0.

Step 4
Again, while still in the JavaScript tab, below the code entered in the previous step, you should
enter the following code:

function pip(column: number, row: number, item: number) {
if (item == 0) {
led.unplot(column, row);

}
else {

led.plot(column, row);
}

}

function show(item: number) {
let face: number[] = faces[item];
pip(1, 1, face[@]);

pip(2, 1, face[1]);
pip(3, 1, face[2]);
pip(1, 2, face[3]);
pip(2, 2, face[4]);
pip(3, 2, face[5]);
pip(1, 3, face[6]);
pip(2, 3, face[7]);
pip(3, 3, face[8]);

12 < Tutorialrcom @@@

http://www.tutorialr.com/
http://creativecommons.org/licenses/by-sa/4.0/

function is a block of code that you can use many times to do the same thing, they can also take in
values known as parameters to use in the function.

1. The first function is called pip and this takes three number parameters — column, row and
item. If item is 0 then the LED on the micro:bit will be turned off at the position specified by
column and row — this is what led.unplot(column,row) does. Otherwise if item is 1 then the
LED on the micro:bit will be turned on at the position specified by column and row — this is
what led.plot(column,row) does

2. The second function is called show and it takes a number parameter called item. let creates
a value to use, here called face and is set to number(], this is a special kind of value known as
an array, which is a list of values, these can be identified with the use of a set of two square
brackets, here it is a list of numbers which can be 1 or 0. To get a particular value from an
array you need an index, which is the position in the array, this starts from 0 for the first item
and 1 for second and so on, so for example to get the fifth value from the array you'd use the
index of 4. We then use the function called pip where you provide the position as a pair of
values for the columns and rows of the LEDs on the front of the micro:bit. As you only want
to light up some of them to display each side of the dice and that's what the face parameter
does which contains which LEDs should be on — represented by a 1 and which should be off -
represented by a 0.

Reference - all possible micro:bit LED positions are as follows:

9,0 1,0 2,0 3,0 4,0
0,1 1,1 2,1 3,1 4,1
0,2 1,2 2,2 3,2 4,2
9,3 1,3 2,3 3,3 4,3
0,4 1,4 2,4 3,4 4,4
Step 5

Once again while still in the JavaScript tab, below the code entered in the previous step, you should
enter the following code:

input.onShake(() => {
roll = Math.randomRange(0, 5);
1)

input are things that happen, also known as events, when you do something with the micro:bit.

The input here is an event that will happen when you shake the micro:bit and when you do it will
set the roll value to a random value between 0 and 5, this is what Math.randomRange(0, 5) does.

13 <Y Tutorialrcom @@@

http://www.tutorialr.com/
http://creativecommons.org/licenses/by-sa/4.0/

Step 6
Finally, while still in the JavaScript tab, below the code entered in the previous step, you should
enter the following code:

basic.forever(() => {
show(roll);

})

basic.forever is a function which will repeat, or loop, forever as long as the example is running on
the micro:bit. Inside this function it will use or call the function named show - this will display the
current value of the roll on the micro:bit using the LEDs in a pattern that matches the number.

Step /

Once done the MakeCode Editor should appear as follows:

O micro:bit @& Home «f share {} Javaseript

emrch o 1 const faces: number[][] =
2 [
52 Basic 3 [e, @, e,
® Input 4 e, 1, a,
5 e, e, a],
@ Music 5 [1, o, &,
© Led 7 e, e, a,
8 e, 0, 1],
all Radio 9 [1, 8, @,
C Loops 1@ e, 1, a,
il e, 0, 1],
X Logic 12 [1, 8, 1,
— 13 e, e, 8,
mz~ = Variables 14 1, e, 11,
B Math 15 [1, @, 1,
16 e, 1, e,
S 2 Iv Advanced 17 1, e, 1],
18 [1, e, 1,
19 1, @, 1,
28 1, 8, 1]

21 1;
23 let roll: number = 8;

25 function pip(column: number, row: number, item: number) {

26 if (item == @) {
27 led.unplot(column, row);
28 }

29 else {

Step 8

That completes the micro:bit example, if not
> done already you can select the Start the
simulator button to start the example

14 < Tutorialrcom @@@

http://www.tutorialr.com/
http://creativecommons.org/licenses/by-sa/4.0/

Step 9

When running on the virtual micro:bit you can shake the micro:bit by pressing the shake button
on the on-screen micro:bit this will randomly select a different face of a dice — it's actually just a
“die” in this case as there's just the one. You can shake the real micro:bit in your hand to do the
same thing.

You can also run the example on an actual micro:bit by connecting one to your computer and then
choosing the Download option in the MakeCode Editor to download the example to your
computer. Once downloaded you can then copy the .hex file from where you've downloaded it to
the micro:bit the same way you'd copy to another drive or device connected to your computer,
then once the example has been copied to the micro:bit it should start automatically.

15 <Y Tutorialrcom @@@

http://www.tutorialr.com/
http://creativecommons.org/licenses/by-sa/4.0/

Compass Game

Go to microbit.org, then select the Let’s Code
option, next in the MakeCode Editor section
select the Let’s Code button, finally select the
New Project button and select the JavaScript
tab

m s e)

< =
£z

O B o

Step 2
With the JavaScript tab selected in the MakeCode Editor you should remove the following code:

basic.forever(() => {

})

Then in the MakeCode Editor you should enter the following code:

let compass: boolean = true;
let current: string

)

let pattern: string[] = [];

let helps create a value which can change and are known as variables which can contain a single
value. Here there's a boolean which can store either true or false it is called compass and is set to
true, then there is string called current and is set to an empty value or ", finally there's an array, or
list of string values which is denoted by the use of two square brackets or [] and is set to an empty
array which is also a pair of square brackets or [].

16 < Tutorialrcom @@@

http://www.tutorialr.com/
http://creativecommons.org/licenses/by-sa/4.0/
http://microbit.org/

Step 3
While still in the JavaScript tab of the MakeCode Editor, below the code entered in the previous
step, you should enter the following code:

function heading(bearing: number): string {
let result: string = "N";
if (bearing < 45) {

result = "N";

} else if (bearing < 135) {
result = "E";

} else if (bearing < 225) {
result = "S"

} else if (bearing < 315) {
result = "W";

}

return result;

}

function show(item: string) {
basic.showString(item)

}

function is a block of code that you can use many times to do the same thing, they can also take in
values known as parameters to use in the function.

1. The first function is called heading and this a number parameter called bearing. Inside there
is a let which is what will be returned and is called result and is set to "N". Following this is an
if statement which uses the value of bearing to make a choice — when this value is less than
45 then the result will be set to "N", otherwise when the bearing is less than 135 then the
result will be set to "E" — there are other checks for other values and these all relate to the
number of degrees around a circle that represent the points on a compass.

2. The second function is called show and the parameter used here is called item and it is a
string, the function will use this value to use or call the basic.showString built in function to
display text on the micro:bit using the LEDs on the front.

17 <Y Tutorialrcom @@@

http://www.tutorialr.com/
http://creativecommons.org/licenses/by-sa/4.0/

Step 4
Again, while still in the JavaScript tab, below the code entered in the previous step, you should
enter the following code:

input.onButtonPressed(Button.A, () => {
pattern.push(current);
compass = false;
show("+");
basic.pause(500);
compass = true;

1)

input.onButtonPressed(Button.B, () => {

let display: string = '';

compass = false;

show(display);

for (let i: number = 0; i < pattern.length; i++) {
display += pattern[i];

}

show(display);

basic.pause(1000);

compass = true;

})

input.onButtonPressed(Button.AB, () => {
pattern = [];

})

input are things that happen, also known as events, when you do something with the micro:bit.

3. The first input is when you press the A button on the micro:bit and when you do it will use
push on the pattern list to add an item to the list or array. It then sets the compass value to
false then it uses show to display a + on the micro:bit LEDs then is followed by a delay of
half a second - this is what basic.pause(500) does, finally it sets the compass value back to
true.

4. The second input is when you press the B button on the micro:bit — when you do it has a
new value or variable called display which is set to an empty string or ** then it sets the
compass value to false then it uses show with this empty string to clear the LEDs. There is a
for loop, which allows something to be repeated — in this case it repeats from 0 to the
number of items in the pattern array which is what pattern.length does, then inside this for
loop it appends the item at the position in pattern array of the value of i which is set by the
loop to the display value. After this it then uses show to output the value of display to the
micro:bit using the LEDs. It then has a delay of one second — which is what
basic.pause(1000) does, then finally it sets the compass value back to true.

5. The third input is when you press both the A and B buttons on the micro:bit at the same
time pattern will be reset to an empty array — this is what [] is.

18 <Y Tutorialrcom @@@

http://www.tutorialr.com/
http://creativecommons.org/licenses/by-sa/4.0/

Step 5
Finally, while still in the JavaScript tab, below the code entered in the previous step, you should
enter the following code:

basic.forever(() => {
if (compass) {
current = heading(input.compassHeading());
show(current);

})

basic.forever is a function which will repeat, or loop, forever as long as the example is running on
the micro:bit. Inside this function it will check the value of compass and when this is true it will
then set the current value using the function called heading where the parameter bearing has been
provided with the current direction the micro:bit is pointing - that is what
input.compassHeading() does. Then it will use or call the function named show — this will display
value of current on the micro:bit using the LEDs.

Step 6

Once done the MakeCode Editor should appear as follows:

(O micro:bit @& Home «f share {} Javaseript

o 1 let compass: boolean = true;
2 let current: string = '';
& Basic 3 let pattern: string[] = [];
@ Input 4
5 function heading(bearing: number): string {
@ Music [let result: string = "N";
© Led 7 if (bearing < 45) {
8 result = "N";
all Radio 9 } else if (bearing < 135) {
18 result = "E";
C' Loops 11 } else if (bearing < 225) {
X Logic 12 result = "S"
—_ 13 } else if (bearing < 315) {
[- 0 = Variables 14 result = "W";
f Math 15 }
16 return result;
I v oo 17
18
19 function show(item: string) {
20 basic.showString(item)
21 }
22
23 input.onButtonPressed(Button.A, () => {
24 pattern.push(current);
25 compass = false;
26 show("+");
27 basic.pause(56@);
28 compass = true;

29 1

Step 7/

That completes the micro:bit example, if not
> done already you can select the Start the
simulator button to start the example

19 < Tutorialrcom @@@

http://www.tutorialr.com/
http://creativecommons.org/licenses/by-sa/4.0/

Step 8

When running on the virtual micro:bit you can set the compass by moving around the micro:bit
logo this will display the direction it is pointing in, for example S for South — you can turn a real
micro:bit in your hand to point in a particular direction do the same thing, you'll need to calibrate
it by waving it around in a figure-of-eight in the air until the micro:bit indicates this has completed.
You can then press the A button to add a direction to a list which can be displayed at any time by
pressing the B button which will display all the directions added — to clear the list at any time you
just press the A and B buttons together.

You can also run the example on an actual micro:bit by connecting one to your computer and then
choosing the Download option in the MakeCode Editor to download the example to your
computer. Once downloaded you can then copy the .hex file from where you've downloaded it to
the micro:bit the same way you'd copy to another drive or device connected to your computer,
then once the example has been copied to the micro:bit it should start automatically.

20 <Y Tutorialrcom @@@

http://www.tutorialr.com/
http://creativecommons.org/licenses/by-sa/4.0/

