
 

micro:bit 
 

 
 

 

 

 

 

  

http://www.tutorialr.com/


1 

 

About & Start 

About 

micro:bit is a pocket-sized computer that you can code, customise and control to bring all sorts of 

cool creations to life from robots to musical instruments. micro:bit measures 4cm by 5cm and has 

25 red LEDs to display messages, two programmable buttons for uses such as controlling games or 

skipping songs in playlist, it can detect motion and tell which direction it is pointing and can use 

Bluetooth to communicate with other devices and the Internet. 

 

  

http://www.tutorialr.com/
http://creativecommons.org/licenses/by-sa/4.0/


2 

 

Start 

To get started with micro:bit and to find out more about it visit microbit.org 

 

Next to get started with coding with micro:bit, once on the website select the Let’s Code option 

 

Then from the Let’s Code page select the Let’s Code button in the MakeCode Editor section 

http://www.tutorialr.com/
http://creativecommons.org/licenses/by-sa/4.0/
http://microbit.org/


3 

 

Finally, in the MakeCode Editor page select the New Project button and then select the JavaScript 

tab 

 

To run an example on a real micro:bit select the Download button and follow the instructions 

 

 

http://www.tutorialr.com/
http://creativecommons.org/licenses/by-sa/4.0/


4 

 

Hello World 

Step 1 

 

Go to microbit.org, then select the Let’s Code 

option, next in the MakeCode Editor section 

select the Let’s Code button, finally select the 

New Project button and select the JavaScript 

tab 

Step 2 

With the JavaScript tab selected in the MakeCode Editor you should see the following code: 

basic.forever(() => { 
 
}) 

Within this you should type the following code: 

basic.showString("Hello World!") 

Step 3 

Once done the MakeCode Editor should appear as follows: 

 

  

http://www.tutorialr.com/
http://creativecommons.org/licenses/by-sa/4.0/
http://microbit.org/


5 

 

Step 4 

In the MakeCode Editor you can also select the Blocks tab, which is an easy to use drag-and-drop 

style of programming for younger or less experienced coders 

 

Step 5 

 

That completes the micro:bit example, if not 

done already you can select the Start the 

simulator button 

Step 6 

When running on the virtual micro:bit the LEDs will scroll through the text Hello World 

 

You can also run the example on an actual micro:bit by connecting one to your computer and then 

choosing the Download option in the MakeCode Editor to download the example to your 

computer. Once downloaded you can then copy the .hex file from where you’ve downloaded it to 

the micro:bit the same way you’d copy to another drive or device connected to your computer, 

then once the example has been copied to the micro:bit it should start automatically. 

http://www.tutorialr.com/
http://creativecommons.org/licenses/by-sa/4.0/


6 

 

Show Message 

Step 1 

 

Go to microbit.org, then select the Let’s Code 

option, next in the MakeCode Editor section 

select the Let’s Code button, finally select the 

New Project button and select the JavaScript 

tab 

Step 2 

With the JavaScript tab selected in the MakeCode Editor you should remove the following code: 

basic.forever(() => { 
 
}) 

Then in the MakeCode Editor you should enter the following code: 

const items: string[] = [ 
    "A", "B", "C", "D", "E", "F", "G", "H", "I", "J", "K", "L", "M", 
    "N", "O", "P", "Q", "R", "S", "T", "U", "V", "W", "X", "Y", "Z", 
    "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "!", "?", " " 
]; 

const means a value that doesn’t change and this is set to a string[] called items which is a special 

kind of value known as an array, which is a list of values, these can be identified with the use of a set 

of two square brackets, here it is a list of string. To get a particular value from an array you need an 

index, which is the position in the array, this starts from 0 for the first item and 1 for second and so 

on, so for example to get the fifth value from the array you’d use the index of 4. 

  

http://www.tutorialr.com/
http://creativecommons.org/licenses/by-sa/4.0/
http://microbit.org/


7 

 

Step 3 

While still in the JavaScript tab of the MakeCode Editor, below the code entered in the previous 

step, you should enter the following code: 

let counter: number = 0; 
let editing: boolean = false; 
let display: string = ""; 
let message: string = ""; 

let helps create another kind of value, these can change and are known as variables which can 

contain a single value, there are different types of value used here. First there’s a number which can 

store a whole number such as 0, 1, 2, 3 and so on. Then there’s a boolean this can be either true or 

false and here is set to false. Then there are two strings, and these can be any kind of text, they have 

been set to an empty string which is "". 

Step 4 

Again, while still in the JavaScript tab, below the code entered in the previous step, you should 

enter the following code: 

function show(item: string) { 
    basic.showString(item) 
} 

function is a block of code that you can use many times to do the same thing, they can also take in 

values known as parameters to use in the function. The parameter used here is called item and it is 

a string. The function will use this value to use or call the basic.showString built in function to 

display text on the micro:bit using the LEDs on the front. 

  

http://www.tutorialr.com/
http://creativecommons.org/licenses/by-sa/4.0/


8 

 

Step 5 

Once again while still in the JavaScript tab, below the code entered in the previous step, you should 

enter the following code: 

input.onButtonPressed(Button.A, () => { 
    if (counter == items.length) { 
        counter = 0; 
    } 
    display = items[counter]; 
    counter++; 
}) 
  
input.onButtonPressed(Button.B, () => { 
    message += display; 
    show("+"); 
}) 
  
input.onButtonPressed(Button.AB, () => { 
    editing = !editing; 
}) 

input are things that happen, also known as events, when you do something with the micro:bit, 

they are as follows: 

1. The first input is when you press the A button on the micro:bit and when you do it will check 

the counter to see if it is the same value as the size or length of the list string[] array, then it 

will set display to be the item from the array with the same index as the counter – if this is 

the first item it will have the value "A", if second it will be "B" and so on, the line counter++ 

will increase the value of counter by one for the next item. 

2. The second input is when you press the B button on the micro:bit and when you do the 

message += display will add the whatever is in the display value onto the end of the 

message value, it will display a "+" on the micro:bit by using the function show briefly 

before continuing. 

3. The third input is when you press both the A and B buttons on the micro:bit at the same 

time editing = !editing will set the value of editing to the opposite of its value, this is what 

the ! does which is known as not. 

  

http://www.tutorialr.com/
http://creativecommons.org/licenses/by-sa/4.0/


9 

 

Step 6 

Finally, while still in the JavaScript tab, below the code entered in the previous step, you should 

enter the following code: 

basic.forever(() => { 
    if (editing) { 
        show(display); 
    } 
    else { 
        show(message); 
    } 
}) 

basic.forever is a function which will repeat, or loop, forever as long as the example is running on 

the micro:bit. Inside this function it will check the editing value in an if statement, when it is true 

the first part of the code will happen, this will show the display value on the micro:bit and in the 

second part, when editing is false it will show the message value on the micro:bit instead. 

Step 7 

Once done the MakeCode Editor should appear as follows: 

 

Step 8 

 

That completes the micro:bit example, if not 

done already you can select the Start the 

simulator button to start the example 

 

  

http://www.tutorialr.com/
http://creativecommons.org/licenses/by-sa/4.0/


10 

 

Step 9 

When running on the virtual micro:bit you can create a message on the LEDs by pressing the A+B 

button on the micro:bit then press the A button to cycle through the list of letters and numbers 

and then press B button to add the letter or number to the list to be displayed, you can keep doing 

this to add more letters and numbers then once the message is complete press A+B again to display 

the full message. 

 

You can also run the example on an actual micro:bit by connecting one to your computer and then 

choosing the Download option in the MakeCode Editor to download the example to your 

computer. Once downloaded you can then copy the .hex file from where you’ve downloaded it to 

the micro:bit the same way you’d copy to another drive or device connected to your computer, 

then once the example has been copied to the micro:bit it should start automatically. 

 

http://www.tutorialr.com/
http://creativecommons.org/licenses/by-sa/4.0/


11 

 

Shaking Dice 

Step 1 

 

Go to microbit.org, then select the Let’s Code 

option, next in the MakeCode Editor section 

select the Let’s Code button, finally select the 

New Project button and select the JavaScript 

tab 

Step 2 

With the JavaScript tab selected in the MakeCode Editor you should remove the following code: 

basic.forever(() => { 
 
}) 

Then in the MakeCode Editor you should enter the following code: 

const faces: number[][] = 
[ 
    [0, 0, 0, 
     0, 1, 0, 
     0, 0, 0], 
    [1, 0, 0, 
     0, 0, 0, 
     0, 0, 1], 
    [1, 0, 0, 
     0, 1, 0, 
     0, 0, 1], 
    [1, 0, 1, 
     0, 0, 0, 
     1, 0, 1], 
    [1, 0, 1, 
     0, 1, 0, 
     1, 0, 1], 
    [1, 0, 1, 
     1, 0, 1, 
     1, 0, 1] 
]; 

 

  

http://www.tutorialr.com/
http://creativecommons.org/licenses/by-sa/4.0/
http://microbit.org/


12 

 

const means a value that doesn’t change and this is set to a number[][] called faces which is special 

kind of value known as an array, which is a list of items, however is extra special as it is a list of lists 

of those items as well. These can be identified with the use of two sets of two square brackets, here 

it is a list of number, where each of those lists is also in a list. Don’t worry if that sounds confusing – 

imagine it like a grid where you can go up and down and side to side, when you get an item from 

this array with an index, or position, this item is also an array – that’s the up and down part, and 

when you get an item from that array item with an index or position – that’s the side to side part. 

Step 3 

While still in the JavaScript tab of the MakeCode Editor, below the code entered in the previous 

step, you should enter the following code: 

let roll: number = 0; 

let helps create another kind of value, these can change and are known as variables which can 

contain a single value. Here there’s a number which can store a whole number such as 0, 1, 2, 3 and 

so on, it is called roll and is set to 0. 

Step 4 

Again, while still in the JavaScript tab, below the code entered in the previous step, you should 

enter the following code: 

function pip(column: number, row: number, item: number) { 
    if (item == 0) { 
        led.unplot(column, row); 
    } 
    else { 
        led.plot(column, row); 
    } 
} 
  
function show(item: number) { 
    let face: number[] = faces[item]; 
    pip(1, 1, face[0]); 
    pip(2, 1, face[1]); 
    pip(3, 1, face[2]); 
    pip(1, 2, face[3]); 
    pip(2, 2, face[4]); 
    pip(3, 2, face[5]); 
    pip(1, 3, face[6]); 
    pip(2, 3, face[7]); 
    pip(3, 3, face[8]); 
} 

 

  

http://www.tutorialr.com/
http://creativecommons.org/licenses/by-sa/4.0/


13 

 

function is a block of code that you can use many times to do the same thing, they can also take in 

values known as parameters to use in the function. 

1. The first function is called pip and this takes three number parameters – column, row and 

item. If item is 0 then the LED on the micro:bit will be turned off at the position specified by 

column and row – this is what led.unplot(column,row) does. Otherwise if item is 1 then the 

LED on the micro:bit will be turned on at the position specified by column and row – this is 

what led.plot(column,row) does 

2. The second function is called show and it takes a number parameter called item. let creates 

a value to use, here called face and is set to number[], this is a special kind of value known as 

an array, which is a list of values, these can be identified with the use of a set of two square 

brackets, here it is a list of numbers which can be 1 or 0. To get a particular value from an 

array you need an index, which is the position in the array, this starts from 0 for the first item 

and 1 for second and so on, so for example to get the fifth value from the array you’d use the 

index of 4. We then use the function called pip where you provide the position as a pair of 

values for the columns and rows of the LEDs on the front of the micro:bit. As you only want 

to light up some of them to display each side of the dice and that’s what the face parameter 

does which contains which LEDs should be on – represented by a 1 and which should be off – 

represented by a 0. 

 

Reference - all possible micro:bit LED positions are as follows: 

0,0 1,0 2,0 3,0 4,0 
0,1 1,1 2,1 3,1 4,1 
0,2 1,2 2,2 3,2 4,2 
0,3 1,3 2,3 3,3 4,3 
0,4 1,4 2,4 3,4 4,4 

Step 5 

Once again while still in the JavaScript tab, below the code entered in the previous step, you should 

enter the following code: 

input.onShake(() => { 
    roll = Math.randomRange(0, 5); 
}) 

input are things that happen, also known as events, when you do something with the micro:bit. 

The input here is an event that will happen when you shake the micro:bit and when you do it will 

set the roll value to a random value between 0 and 5, this is what Math.randomRange(0, 5) does. 

  

http://www.tutorialr.com/
http://creativecommons.org/licenses/by-sa/4.0/


14 

 

Step 6 

Finally, while still in the JavaScript tab, below the code entered in the previous step, you should 

enter the following code: 

basic.forever(() => { 
    show(roll); 
}) 

basic.forever is a function which will repeat, or loop, forever as long as the example is running on 

the micro:bit. Inside this function it will use or call the function named show – this will display the 

current value of the roll on the micro:bit using the LEDs in a pattern that matches the number. 

 Step 7 

Once done the MakeCode Editor should appear as follows: 

 

Step 8 

 

That completes the micro:bit example, if not 

done already you can select the Start the 

simulator button to start the example 

 

  

http://www.tutorialr.com/
http://creativecommons.org/licenses/by-sa/4.0/


15 

 

Step 9 

When running on the virtual micro:bit you can shake the micro:bit by pressing the shake button 

on the on-screen micro:bit this will randomly select a different face of a dice – it’s actually just a 

“die” in this case as there’s just the one. You can shake the real micro:bit in your hand to do the 

same thing. 

 

You can also run the example on an actual micro:bit by connecting one to your computer and then 

choosing the Download option in the MakeCode Editor to download the example to your 

computer. Once downloaded you can then copy the .hex file from where you’ve downloaded it to 

the micro:bit the same way you’d copy to another drive or device connected to your computer, 

then once the example has been copied to the micro:bit it should start automatically. 

  

http://www.tutorialr.com/
http://creativecommons.org/licenses/by-sa/4.0/


16 

 

Compass Game 

Step 1 

 

Go to microbit.org, then select the Let’s Code 

option, next in the MakeCode Editor section 

select the Let’s Code button, finally select the 

New Project button and select the JavaScript 

tab 

Step 2 

With the JavaScript tab selected in the MakeCode Editor you should remove the following code: 

basic.forever(() => { 
 
}) 

Then in the MakeCode Editor you should enter the following code: 

let compass: boolean = true; 
let current: string = ''; 
let pattern: string[] = []; 

let helps create a value which can change and are known as variables which can contain a single 

value. Here there’s a boolean which can store either true or false it is called compass and is set to 

true, then there is string called current and is set to an empty value or '', finally there’s an array, or 

list of string values which is denoted by the use of two square brackets or [] and is set to an empty 

array which is also a pair of square brackets or []. 

  

http://www.tutorialr.com/
http://creativecommons.org/licenses/by-sa/4.0/
http://microbit.org/


17 

 

Step 3 

While still in the JavaScript tab of the MakeCode Editor, below the code entered in the previous 

step, you should enter the following code: 

function heading(bearing: number): string { 
    let result: string = "N"; 
    if (bearing < 45) { 
        result = "N"; 
    } else if (bearing < 135) { 
        result = "E"; 
    } else if (bearing < 225) { 
        result = "S" 
    } else if (bearing < 315) { 
        result = "W"; 
    } 
    return result; 
} 
  
function show(item: string) { 
    basic.showString(item) 
} 

function is a block of code that you can use many times to do the same thing, they can also take in 

values known as parameters to use in the function. 

1. The first function is called heading and this a number parameter called bearing. Inside there 

is a let which is what will be returned and is called result and is set to "N". Following this is an 

if statement which uses the value of bearing to make a choice – when this value is less than 

45 then the result will be set to "N", otherwise when the bearing is less than 135 then the 

result will be set to "E" – there are other checks for other values and these all relate to the 

number of degrees around a circle that represent the points on a compass. 

2. The second function is called show and the parameter used here is called item and it is a 

string, the function will use this value to use or call the basic.showString built in function to 

display text on the micro:bit using the LEDs on the front. 

  

http://www.tutorialr.com/
http://creativecommons.org/licenses/by-sa/4.0/


18 

 

Step 4 

Again, while still in the JavaScript tab, below the code entered in the previous step, you should 

enter the following code: 

input.onButtonPressed(Button.A, () => { 
    pattern.push(current); 
    compass = false; 
    show("+"); 
    basic.pause(500); 
    compass = true; 
}) 
  
input.onButtonPressed(Button.B, () => { 
    let display: string = ''; 
    compass = false; 
    show(display); 
    for (let i: number = 0; i < pattern.length; i++) { 
        display += pattern[i]; 
    } 
    show(display); 
    basic.pause(1000); 
    compass = true; 
}) 
  
input.onButtonPressed(Button.AB, () => { 
    pattern = []; 
}) 

input are things that happen, also known as events, when you do something with the micro:bit. 

3. The first input is when you press the A button on the micro:bit and when you do it will use 

push on the pattern list to add an item to the list or array. It then sets the compass value to 

false then it uses show to display a + on the micro:bit LEDs then is followed by a delay of 

half a second – this is what basic.pause(500) does, finally it sets the compass value back to 

true. 

4. The second input is when you press the B button on the micro:bit – when you do it has a 

new value or variable called display which is set to an empty string or '' then it sets the 

compass value to false then it uses show with this empty string to clear the LEDs. There is a 

for loop, which allows something to be repeated – in this case it repeats from 0 to the 

number of items in the pattern array which is what pattern.length does, then inside this for 

loop it appends the item at the position in pattern array of the value of i which is set by the 

loop to the display value. After this it then uses show to output the value of display to the 

micro:bit using the LEDs. It then has a delay of one second – which is what 

basic.pause(1000) does, then finally it sets the compass value back to true. 

5. The third input is when you press both the A and B buttons on the micro:bit at the same 

time pattern will be reset to an empty array – this is what [] is. 

  

http://www.tutorialr.com/
http://creativecommons.org/licenses/by-sa/4.0/


19 

 

Step 5 

Finally, while still in the JavaScript tab, below the code entered in the previous step, you should 

enter the following code: 

basic.forever(() => { 
    if (compass) { 
        current = heading(input.compassHeading()); 
        show(current); 
    } 
}) 

basic.forever is a function which will repeat, or loop, forever as long as the example is running on 

the micro:bit. Inside this function it will check the value of compass and when this is true it will 

then set the current value using the function called heading where the parameter bearing has been 

provided with the current direction the micro:bit is pointing – that is what 

input.compassHeading() does. Then it will use or call the function named show – this will display 

value of current on the micro:bit using the LEDs. 

 Step 6 

Once done the MakeCode Editor should appear as follows: 

 

Step 7 

 

That completes the micro:bit example, if not 

done already you can select the Start the 

simulator button to start the example 

 

  

http://www.tutorialr.com/
http://creativecommons.org/licenses/by-sa/4.0/


20 

 

Step 8 

When running on the virtual micro:bit you can set the compass by moving around the micro:bit 

logo this will display the direction it is pointing in, for example S for South – you can turn a real 

micro:bit in your hand to point in a particular direction do the same thing, you’ll need to calibrate 

it by waving it around in a figure-of-eight in the air until the micro:bit indicates this has completed. 

You can then press the A button to add a direction to a list which can be displayed at any time by 

pressing the B button which will display all the directions added – to clear the list at any time you 

just press the A and B buttons together. 

 

You can also run the example on an actual micro:bit by connecting one to your computer and then 

choosing the Download option in the MakeCode Editor to download the example to your 

computer. Once downloaded you can then copy the .hex file from where you’ve downloaded it to 

the micro:bit the same way you’d copy to another drive or device connected to your computer, 

then once the example has been copied to the micro:bit it should start automatically. 

 

 

http://www.tutorialr.com/
http://creativecommons.org/licenses/by-sa/4.0/

