
1

Shaking Dice

Step 1

Go to microbit.org, then select the Let’s Code

option, next in the MakeCode Editor section

select the Let’s Code button, finally select the

New Project button and select the JavaScript

tab

Step 2

With the JavaScript tab selected in the MakeCode Editor you should remove the following code:

basic.forever(() => {

})

Then in the MakeCode Editor you should enter the following code:

const faces: number[][] =
[
 [0, 0, 0,
 0, 1, 0,
 0, 0, 0],
 [1, 0, 0,
 0, 0, 0,
 0, 0, 1],
 [1, 0, 0,
 0, 1, 0,
 0, 0, 1],
 [1, 0, 1,
 0, 0, 0,
 1, 0, 1],
 [1, 0, 1,
 0, 1, 0,
 1, 0, 1],
 [1, 0, 1,
 1, 0, 1,
 1, 0, 1]
];

http://www.tutorialr.com/
http://creativecommons.org/licenses/by-sa/4.0/
http://microbit.org/

2

const means a value that doesn’t change and this is set to a number[][] called faces which is special

kind of value known as an array, which is a list of items, however is extra special as it is a list of lists

of those items as well. These can be identified with the use of two sets of two square brackets, here

it is a list of number, where each of those lists is also in a list. Don’t worry if that sounds confusing –

imagine it like a grid where you can go up and down and side to side, when you get an item from

this array with an index, or position, this item is also an array – that’s the up and down part, and

when you get an item from that array item with an index or position – that’s the side to side part.

Step 3

While still in the JavaScript tab of the MakeCode Editor, below the code entered in the previous

step, you should enter the following code:

let roll: number = 0;

let helps create another kind of value, these can change and are known as variables which can

contain a single value. Here there’s a number which can store a whole number such as 0, 1, 2, 3 and

so on, it is called roll and is set to 0.

Step 4

Again, while still in the JavaScript tab, below the code entered in the previous step, you should

enter the following code:

function pip(column: number, row: number, item: number) {
 if (item == 0) {
 led.unplot(column, row);
 }
 else {
 led.plot(column, row);
 }
}

function show(item: number) {
 let face: number[] = faces[item];
 pip(1, 1, face[0]);
 pip(2, 1, face[1]);
 pip(3, 1, face[2]);
 pip(1, 2, face[3]);
 pip(2, 2, face[4]);
 pip(3, 2, face[5]);
 pip(1, 3, face[6]);
 pip(2, 3, face[7]);
 pip(3, 3, face[8]);
}

http://www.tutorialr.com/
http://creativecommons.org/licenses/by-sa/4.0/

3

function is a block of code that you can use many times to do the same thing, they can also take in

values known as parameters to use in the function.

1. The first function is called pip and this takes three number parameters – column, row and

item. If item is 0 then the LED on the micro:bit will be turned off at the position specified by

column and row – this is what led.unplot(column,row) does. Otherwise if item is 1 then the

LED on the micro:bit will be turned on at the position specified by column and row – this is

what led.plot(column,row) does

2. The second function is called show and it takes a number parameter called item. let creates

a value to use, here called face and is set to number[], this is a special kind of value known as

an array, which is a list of values, these can be identified with the use of a set of two square

brackets, here it is a list of numbers which can be 1 or 0. To get a particular value from an

array you need an index, which is the position in the array, this starts from 0 for the first item

and 1 for second and so on, so for example to get the fifth value from the array you’d use the

index of 4. We then use the function called pip where you provide the position as a pair of

values for the columns and rows of the LEDs on the front of the micro:bit. As you only want

to light up some of them to display each side of the dice and that’s what the face parameter

does which contains which LEDs should be on – represented by a 1 and which should be off –

represented by a 0.

Reference - all possible micro:bit LED positions are as follows:

0,0 1,0 2,0 3,0 4,0
0,1 1,1 2,1 3,1 4,1
0,2 1,2 2,2 3,2 4,2
0,3 1,3 2,3 3,3 4,3
0,4 1,4 2,4 3,4 4,4

Step 5

Once again while still in the JavaScript tab, below the code entered in the previous step, you should

enter the following code:

input.onShake(() => {
 roll = Math.randomRange(0, 5);
})

input are things that happen, also known as events, when you do something with the micro:bit.

The input here is an event that will happen when you shake the micro:bit and when you do it will

set the roll value to a random value between 0 and 5, this is what Math.randomRange(0, 5) does.

http://www.tutorialr.com/
http://creativecommons.org/licenses/by-sa/4.0/

4

Step 6

Finally, while still in the JavaScript tab, below the code entered in the previous step, you should

enter the following code:

basic.forever(() => {
 show(roll);
})

basic.forever is a function which will repeat, or loop, forever as long as the example is running on

the micro:bit. Inside this function it will use or call the function named show – this will display the

current value of the roll on the micro:bit using the LEDs in a pattern that matches the number.

 Step 7

Once done the MakeCode Editor should appear as follows:

Step 8

That completes the micro:bit example, if not

done already you can select the Start the

simulator button to start the example

http://www.tutorialr.com/
http://creativecommons.org/licenses/by-sa/4.0/

5

Step 9

When running on the virtual micro:bit you can shake the micro:bit by pressing the shake button

on the on-screen micro:bit this will randomly select a different face of a dice – it’s actually just a

“die” in this case as there’s just the one. You can shake the real micro:bit in your hand to do the

same thing.

You can also run the example on an actual micro:bit by connecting one to your computer and then

choosing the Download option in the MakeCode Editor to download the example to your

computer. Once downloaded you can then copy the .hex file from where you’ve downloaded it to

the micro:bit the same way you’d copy to another drive or device connected to your computer,

then once the example has been copied to the micro:bit it should start automatically.

http://www.tutorialr.com/
http://creativecommons.org/licenses/by-sa/4.0/

