

C#

http://www.tutorialr.com/

1

Contents

Introduction.. 2

What is Programming? .. 2

What is C#? .. 4

What is dotnetfiddle.net? ... 5

Overview ... 6

Output, Operators, Types & Variables and Input .. 7

Output ... 7

Operators .. 9

Types & Variables ... 10

Input .. 12

Flow, Loops, Properties & Access and Methods ... 13

Flow .. 13

Loops ... 15

Properties & Access ... 17

Methods ... 18

Exceptions, Events, Classes & Objects and Interfaces ... 20

Exceptions ... 20

Events .. 22

Classes & Objects ... 23

Interfaces ... 28

Libraries, Collections, Lambdas & LINQ and Generics .. 29

Libraries .. 29

Collections ... 31

Lambdas & LINQ .. 34

Generics .. 38

http://www.tutorialr.com/
http://creativecommons.org/licenses/by-sa/4.0/

2

Introduction

What is Programming?

Programming can seem daunting but if you think about it as another form of writing with its own grammar,

style and layout then that's a good way to approach it. From the simplest sample to the most advanced

application the concepts are the same, there's just more to write - when reading or writing you have words

and paragraphs and programming has its own way being written and breaking up functionality however

unlike text you can do many different things with the same piece of functionality if you write it in a way. There

are two main rules to help keep programming from being too complicated that are KISS and DRY - which is

Keep it Short and Simple and Don't Repeat Yourself with those two things in mind that will help you along

the way.

Programming is essentially a set of tasks for a computer to perform and rules for it to follow, this essentially

can be a self-contained sequence of actions to be performed - these are known as algorithms and form the

basic concept of programming. Think of a sequence of actions like how to make a cup of tea, you can even

write this down and that's an algorithm there will be steps to follow, some which need to be done in an order,

also maybe different choices such as taking milk or sugar - things that vary in programming are known as

variables such as how many lumps of sugar to add when making tea.

When creating an algorithm, it's important to have all the steps explained - each part of this can be a block

of functionality such as fill kettle or pour water - if there's a lot of similar steps together you can group them

together, much like a paragraph - in programming these are known as functions but may also be referred to

as methods. These functions may be used to perform a small sub-set of tasks and can contain their own

variables but it's also possible to supply these functions with values - these are known as parameters and a

function can use these parameters to use for its task and some functions can even return a value, for example

you can have a function to add two numbers together and return the answer.

Just like in writing there's words you need to use to make it make sense such as verbs and nouns and

programming has its own which are often known as key or reserved words - these can dictate what a variable

might be, can it just be whole numbers which are known as integers or a piece of text which is known as a

string. Key words can also set how functions may be used in programming - in a lot of languages there is a

concept known as a class, this is where all the code - which is what makes up programming is grouped

together to represent something or some common functionality.

http://www.tutorialr.com/
http://creativecommons.org/licenses/by-sa/4.0/

3

There will be functions that can be used only inside one of these classes - those are known as private, and

there are those that can be used both inside and outside the class - these are known as public, both functions

and variables can be private and public. There's also a special kind of variable called a property, where you

can get a value from them or set their value - these are most useful for parts of a class that you want to use

such as if a class were to represent a Car you could have a property for number of doors or one for colour.

You can also use classes to help organise code but also in many programming languages the minimum

amount of code needed can itself be a class and will often have a main method which will be the start of the

code to be used.

When you want to write something you'll use a word processing application or something similar, in

programming this is also the case as all programming languages have their preferred programming

environment - these are often called Integrated Development Environments or IDEs and these allow you to

write your code and also make it easier to read with colourisation of keywords and line numbers to help you

find parts you have written, there may be other features to help you find out what things you can type in to

access additional functionality or related actions. To perform the actions that have been defined in the code

it is compiled, this means it is turned into instructions the computer can understand, some programming

languages have an additional layer for this but essentially down at the "bottom" there's code the computer

uses to run or execute your actions.

The best way to start programming is to write small examples that use the various features of a programming

language and perform familiar actions such as addition or subtraction using the programming language to

see how it works, programming languages are very good at doing these kind of actions so they're a good

way to get started, then you can build up from there - you probably did something similar when learning to

read and write where smaller examples can be used to get started and programming should be no different.

The best thing to do is as things get more complicated then break them down - you'll have a few lines of

code grouped together in functions just like sentences in paragraphs and don't put too many together so

that if there's a mistake you can spot it, just like proof-reading you may need to just need to concentrate on

small sections at a time to help find anything wrong.

Also don't worry if something doesn't work the first time around, maybe like the making tea example you

forgot to put in a step for filling the kettle, sometimes you can learn a lot more from making a mistake to see

what you might need to look out for, in programming you might have a variable you expect to be larger than

ten but you never set it to anything larger than nine instead might be the kind of problems you encounter,

most mistakes in programming are down to assuming something will be in a given state at a particular time,

when you perform actions in your code it will go through various states, by breaking up your code into smaller

sections you can examine these states when the code is being executed, often called debugging, to see if

things are the way they should be, or not in programming!

http://www.tutorialr.com/
http://creativecommons.org/licenses/by-sa/4.0/

4

What is C#?

C# is what you'll be learning to write code in - pronounced "C-sharp" like the musical note, this language is

like many others although they might have slightly different keywords and other minor differences but

belongs to a well-established family of programming languages. C# began as part of the Microsoft .NET

Framework - this is one of those layers mentioned previously which executes your code and issues the actual

instructions your computer will perform when it runs, it also has all the additional functionality you can take

advantage of as part of the framework which contains commonly used and needed functionality so generally

you only need to write what you need that's unique to your programme and if you need to do something

like open a file then the libraries that make up the .NET Framework are there plus it's possible to use libraries

written by other people or companies in your applications but as a beginner you'll just be starting out with

the basics but it's nice to know you can take advantage of more functionality should you need it.

C# supports many features common to modern programming languages and has its own structure with

blocks of code between curly braces being the most obvious which helps you clearly see where a function or

a class starts and ends, it has a variety of keywords you can store the information you need with variables to

store the type of information be that integers for whole numbers like 1 to 10 and strings to store text like

"Hello World!", each piece of functionality you can use in C# will be introduced and explained along the way

but you see many of the things mentioned that are common to all programming which you can apply to

other programming languages - but also learn many useful things that you can do in C# to make things easier

or to do the actions you need.

http://www.tutorialr.com/
http://creativecommons.org/licenses/by-sa/4.0/

5

What is dotnetfiddle.net?

To run any C# code during this workshop all you need is to be able to access dotnetfiddle.net in your browser,

there are two main parts a larger upper text area which will contain the code you need to type in and a lower

text area which will show any output:

It will only be necessary to type in any code into the larger upper text area which by default when you first

visit dotnetfiddle.net will sow the following:

Any output that your code will produce in dotnetfiddle.net will appear in the lower text area, the default

example will show the following:

Anything you type will be “run” as you enter it however you can change the “Auto Run” to No if you prefer

to select “Run” from the top instead.

http://www.tutorialr.com/
http://creativecommons.org/licenses/by-sa/4.0/

6

Overview

In this workshop we'll start with a small amount of code you'll need to write to get something to happen

which is to output something on the screen - this is a good way of seeing the steps of getting something

written and working without too much code to go through and work out what it does, anything new will be

explained along the way plus various concepts will be repeated and used in different ways just like it's possible

to use language in different ways in writing, programming is the same but it's okay to take time to understand

something that's new in programming just as it was when learning to read and write.

Also you can always stop and go back over an example and there'll be other concepts you don't see in normal

writing such as being able to repeat some actions - called looping or iteration, create decisions or branches

and dealing with input and output but always using something that you've learned in a previous part of the

workshop should help, you'll not only learn more about programming in general but also how to use the

tools and features of a programming language used by millions of people all around the world used in

portable devices, to complex business processes, major websites and software applications many of which

you've probably seen or used.

C# will be introduced in this workshop in phases with many of the core features you'll need to create small

or complex applications introduced, so anything new will be explained along the way so you can always go

back later if you're not sure of anything - everyone has been a beginner at some point and it's never too late

or too early to learn to code and C# opens many options to take skills to mobile, desktop, cloud or even for

games and new devices such as HoloLens but the smallest and best application is an old concept known as

a console application, this allows you to see all your code in once place and easily see the output - don't

worry if you're not familiar with the console these days but many years ago it was the only option for an

application but still be able to take advantage of the latest features.

To make things even easier you don't need to use any programming tools or IDE such as Visual Studio for C#

but will instead use a website called dotnetfiddle.net. There you can type in your Code and see what happens

when it runs and there's nothing extra to install. However you can of course install “Visual Studio 2019

Community Edition” on your PC, then “Create a new project” and select “Console App (.NET Core)” and then

input any code into the “Program.cs” file as this is the same code from that point this workshop will cover if

you want to go through the exercises using the full tools available, but to keep things simple at first it's

recommended you use something like dotnetfiddle.net for now.

http://www.tutorialr.com/
http://creativecommons.org/licenses/by-sa/4.0/

7

Output, Operators, Types & Variables and Input

Output

In this first example, you will learn about how to write some code to display Hello World, this is a classic

programming example that’s traditional start to learning any programming language!

Visit dotnetfiddle.net and in the large box define which namespace to use entering the following:

System is used to allow access to the Console to output “Hello World”, a namespace is a way of organising

groups of programming elements that can be used in the programme and the using statement should end

with a semicolon like most statements in C#.

The next thing to do is to define the class for the example called Demo by entering in to dotnetfiddle.net

the following:

Public is a Keyword that defines the access level of a class and how it may be used by other parts of the code

and in this case, anything can access it. The class Keyword is used to define classes and this also uses curly

braces to define the scope of the class.

The next thing to define is the Main Method which is the entry point for the example and is the first code to

be run - this Method should be defined as below:

Like a class, a method can also have an access level and again this is public so anything can access it, static

defines this Method as global but will go into this concept in more detail later and the void Keyword means

the Method doesn’t return a value and the brackets define any Parameters or none in this case, we’ll learn

about those later too.

public class Demo
{

}

public static void Main()
{

}

http://www.tutorialr.com/
http://creativecommons.org/licenses/by-sa/4.0/

8

Within the Main Method in dotnetfiddle.net the following should be entered:

Console is a type in the System namespace that can be used, here the WriteLine method is called and is

like the Main Method in the example as it is also declared as being static. Inside the brackets is a value being

passed as a Parameter, this is a string which is a set of text characters, in this case “Hello World”, the whole

application in dotnetfiddle.net should look as below:

You can then use the Run option to start the programme which will display the text “Hello World” in the

lower large box on dotnetfiddle.net or if Auto Run is Yes then it will run automatically.

This programme structure will be used in all subsequent examples so they’ll always start with the using

statements, followed by defining the class then the Main Method the example will use as its entry point

which is the first point that will be reached when the example is started.

Console.WriteLine("Hello World");

public class Demo
{
 public static void Main()

{
 Console.WriteLine("Hello World");

}
}

http://www.tutorialr.com/
http://creativecommons.org/licenses/by-sa/4.0/

9

Operators

C# supports many kinds of Operators which are symbols that specify which Operations such as mathematics.

We’ll cover some of the basic ones here such as addition and multiplication.

The first thing is to define the basic structure of a programme by entering the following in dotnetfiddle.net

in the main window:

// Code is a Comment which is defined by writing // before anything that can be included in the programme

but won’t be run as part of it such as reminders or explanations of what the code should do.

The first Operator to use is + which is used for addition so enter the following below // Code in

dotnetfiddle.net:

Then select Run in dotnetfiddle.net and this will display the answer as the output, it is also possible to use

other mathematical Operators so can change + to * for multiply, - for subtraction or / for division to see what

happens such as entering the following in dotnetfiddle.net:

You should see the appropriate answers appear in the output for each Operator that has been used whether

it is addition, multiplication, subtraction or division.

public class Demo
{
 public static void Main()

{
 // Code

}
}

Console.WriteLine(4 + 2);

Console.WriteLine(4 * 2);
Console.WriteLine(4 - 2);
Console.WriteLine(4 / 2);

http://www.tutorialr.com/
http://creativecommons.org/licenses/by-sa/4.0/

10

Types & Variables

C# is what’s known as a strongly typed language where every Variable has a type as does every expression

that has a value, there are many types available, some of which will be covered here.

The first thing is to define the basic structure of the code by entering the following in dotnetfiddle.net in

the main window:

The first way to use types is like algebra in mathematics, so enter the following below // Code:

int is the type which is an Integer which can contain large or small whole numbers, a is the name of the

variable and = is used to assign the value to the type, you can try changing the operator to * for multiply, -

for subtraction and finally / for division and check the answer it gives when use Run in dotnetfiddle.net

In mathematics, it of course it is possible to get answers that aren’t whole numbers so will need to use a type

that allows this so replace the code from before with the following:

double is a type that does support decimal places in numbers so need to remember to use the correct type

and you can use Run to see the correct answer.

public class Demo
{
 public static void Main()

{
 // Code

}
}

int a = 5;
int b = 2;
Console.WriteLine(a + b);

double a = 5;
double b = 2;
Console.WriteLine(a / b);

http://www.tutorialr.com/
http://creativecommons.org/licenses/by-sa/4.0/

11

Variables aren’t just used to do mathematics - they can be used to store anything for use in the application

either one or many times and can be changed with new values.

You can try this with string which represents a series of characters by entering in to dotnetfiddle.net the

following:

Text and Numbers relate to things you encounter day to day and can relate to but there are also Types that

are a bit more specific to programming, enter in to dotnetfiddle.net the following example:

You can then run this in dotnetfiddle.net, bool is a type to store Boolean values which can either be true or

false, in this example it will output true and uses another operator && which means “and” so if both a and

b are true the output will be true, it’s also possible to use || which means “or” to produce the same output

as if a or b are true, change the “Console.WriteLine” line to the following:

When run in dotnetfiddle.net this will output the opposite value as ! means not so if something is true it

becomes false and if it’s false it becomes true.

public class Demo
{
 public static void Main()

{
 string message = Hello World ;

 Console.WriteLine(message);
}

}

http://www.tutorialr.com/
http://creativecommons.org/licenses/by-sa/4.0/

12

Input

In the previous examples everything has been output to the Console but it is also possible to allow something

to be Input from the Console.

To create a simple input example by using dotnetfiddle.net and entering the following:

When Run in dotnetfiddle.net a “prompt” will appear below the code window > and can then type anything

there and end input by typing enter or return, this will then be output.

Another example is to enter a number to be used in a calculation by entering in to dotnetfiddle.net the

following:

By typing in a value for a or b can then output the sum of these values, another feature shown is that types

often have static Methods, in this case Parse which allows something to be converted to that type so when

Run in dotnetfiddle.net you can enter 1 then 2 to get the answer 3, it’s possible to change the operator to

ones used for int such as * for multiply, - for subtraction or / for divide – for that last one try changing int to

double to avoid losing anything after a decimal point like when doing 5 divided by 2.

http://www.tutorialr.com/
http://creativecommons.org/licenses/by-sa/4.0/

13

Flow, Loops, Properties & Access and Methods

Flow

Just doing the same thing over and over doesn’t a very interesting application, that’s where decisions come

in, a program can make a choice what to do based on a condition to choose what path it should follow in the

programme and can be used for a variety of purposes such as checking values or validating any user input.

The if statement can be used for conditions, in dotnetfiddle.net enter the following:

The if statement is followed by a conditional statement in brackets which checks if the number is equal to

zero, if it is the action in the curly braces will occur, if not it won’t, so try changing the int value of number in

dotnetfiddle.net to the following:

This will change the output value because the number is no longer equal to zero, you can use anything that

worked for bool to control what happens within an if statement. It’s also useful to follow the indentation

used in the example as it makes it very easy to see if what flow the programme is going to perform so can

avoid any problems or confusion later about what will happen inside the if statement, in that example only

one path was used based on whether something was true.

http://www.tutorialr.com/
http://creativecommons.org/licenses/by-sa/4.0/

14

When using Conditions, it may be that you want to do something when the value is true then do something

different if it isn’t, this is done with an if - else statement where if is combined with else so that either one or

the other is performed based on the condition being true or false.

To use an if, else statement in dotnetfiddle.net enter the following:

if is followed by a conditional statement in brackets – which in this example checks if the number is greater

or equal to one and is less than or equal to 10, when this is true the programme will perform the actions in

the first set of curly brackets, but when this is false or when it’s something else it will perform the action after

that in the second set of curly brackets of the if statement, when the program is run try entering different

numbers that are between 1 and 10 or different as see the different conditions of the programme.

http://www.tutorialr.com/
http://creativecommons.org/licenses/by-sa/4.0/

15

Loops

Another way you can do more things by repeating statements in a loop. The first type of loop is the while

loop which is like the if statement but instead of performing its operation once it will perform it until the

condition is satisfied.

To use a while loop in dotnetfiddle.net enter the following:

In this example, the while loop will continue until the number is lower than 1 or it is higher than 10, so if

enter anything outside that range it will keep looping otherwise it will exit the loop, this is like if that the loop

only happens as long as the condition is true.

It is possible to write a loop that checks the condition last with a do while loop, you can do this in

dotnetfiddle.net by entering the following:

Another kind of loop is the for loop which is ideal for use when you know how many times you want to loop

or it’s easy to work out how many times the loop needs to run.

http://www.tutorialr.com/
http://creativecommons.org/licenses/by-sa/4.0/

16

You can write a for loop in dotnetfiddle.net and enter the following:

The while loop uses a single bool expression but the for loop uses three expressions, the first declares an

int variable called number and sets it to 0, the second is the conditional expression which will be true until

the number is not less than or equal to 10, the third expression is used to increment the value using another

Operator ++ which adds 1 to the value, there’s also -- that subtracts 1 from a value.

Another type of for loop is a foreach which will loop through an Array or similar Object where the items to

be looped through already exist – an array is just a list of values and is denoted by [] to use this and the

foreach in dotnetfiddle.net enter the following:

http://www.tutorialr.com/
http://creativecommons.org/licenses/by-sa/4.0/

17

Properties & Access

Programmes can already have Variables but it’s also possible to have Properties which is a flexible way or

reading, writing or computing the value of another field and allows data to be accessed easily. This other field

may be set up as private which is an Access modifier which means it can only be set or read within the same

class they are contained within.

If is then possible to create a public property which can be accessed from anywhere that uses this private

field and do something different with that Variable, you can do this in dotnetfiddle.net by entering the

following:

In this example, the Variable or Member _seconds is declared as private it is also using the static keyword

as the method it is being called from is also static, the Property Minutes is declared as public so can save

the Minutes value into seconds using the Property.

When declaring private members for properties you can name them with an underscore in front so you know

they’ll be private and usually not used directly. When declaring a public Property these usually begin with a

capital letter and when using multiple words each word should be capitalised – this is known as Camel Case.

http://www.tutorialr.com/
http://creativecommons.org/licenses/by-sa/4.0/

18

Methods

In all the previous examples there has just been one static method of Main in the Console application and

have even used methods such as int.Parse. A method is a function used in a class and contains a series of

usually related statements in a programme, they can optionally accept Parameters which are values that can

be passed in or return a value.

Methods are something that do something in the programme and should be named accordingly so it’s clear

what it does and it usually should only do one thing and allows you to avoid repeating yourself when writing

a programme, to create a Method in dotnetfiddle.net enter the following:

In this example Addition is declared as a public and static method and it takes two parameters – which are

between the brackets and then returns the values added together and Subtract is similar but returns the

values subtracted from each other.

http://www.tutorialr.com/
http://creativecommons.org/licenses/by-sa/4.0/

19

Methods that can be written or declared can return a value but they don’t have to return a value – these

values use void in place of a return type, and they can either accept parameters or not and it is also possible

to have methods that have parameters that are optional but present with a default value when none is passed

in.

An example of void and optional parameters in dotnetfiddle.net by entering the following:

In this example, there is a public static Method that doesn’t return a value but it uses a string Parameter

called value which must always be used, and a second int Parameter which is optional, this value is used to

control a for loop inside the method. Another namespace is also used in the example for System.Text which

contains the StringBuilder which is used here, an Instance or copy of this needs to be used - that’s what new

does. Then the AppendLine Method of it is used to add a new line to the StringBuilder and when the loop

is complete this is then converted to a string using an Extension Method called “ToString”, this is similar to

how int.Parse was used before and the Loop Method is called with or without the loop value to show the

different behaviour.

http://www.tutorialr.com/
http://creativecommons.org/licenses/by-sa/4.0/

20

Exceptions, Events, Classes & Objects and Interfaces

Exceptions

Exceptions are errors caused by things that weren’t supposed to happen, but it is possible to handle when

things don’t happen as expected in your programme.

This example will crash if incorrect input is entered, in dotnetfiddle.net enter the following:

Type Number and an exception will occur Input string was not in a correct format this is Unhandled as

there’s nothing to cope with this happening and the programme crashes.

To handle an exception you need a try - catch block where the try is the code you might have a problem

with and a catch to do something when this exception happens.

To use a “try - catch” in dotnetfiddle.net enter the following:

In the example, there is a try block contains any code that might throw an Exception, if this does happen

then the catch block code is run, there is a parameter for FormatException which is the type of exception

expected if the input is invalid, it’s possible to get details of the error from the parameter if needed.

http://www.tutorialr.com/
http://creativecommons.org/licenses/by-sa/4.0/

21

It’s also possible to throw your own exceptions if something occurs and your programme shouldn’t handle

that situation itself but make the programme aware of this error instead.

To use a throw in dotnetfiddle.net by entering the following:

When you throw an exception using the throw Keyword followed by the type of exception object in this case

it is an ArgumentOutOfRangeException to indicate when the input was out of range, this example would

also raise the System.FormatException as well.

Something to remember is that it is best to not throw a System.Exception, System.SystemException or

ApplicationException but more specific ones like the one in the example and that you shouldn’t rely on

Exceptions to do validation but use if to see if something is correct or not and use exception for those things

that might happen such as you accept an int but the value entered is too high for that type.

http://www.tutorialr.com/
http://creativecommons.org/licenses/by-sa/4.0/

22

Events

Events are a way for a class to provide notifications when something interesting has happened to an object,

for example in a user experience with a button when you tap the button this would be an event that has

occurred, however they aren’t just for user experiences but are useful to indicate a change of state that might

be of use to something.

Events in can be created using something known as a delegate which is a type that represents or

encapsulates a Method with a set of parameters and a return type.

An example of using an event and delegate in dotnetfiddle.net, enter the following:

In this example, there is the delegate which is has the Signature of the event to use that would be the

parameters it will use in this case it is an int called number. Then there is the event which uses the Delegate

as its type, this would be what would be called to make the event occur. Then there is a Method which also

matches the Signature of the delegate and takes the same Parameters. In the Main Method, there is the

event and a new operator += which in this case is used specify the method that will be called in response to

an event which is a method with the same signature as the delegate and the OnChanged Method to be

called when the event occurs, then we raise the event by calling that Method and pass in a value.

http://www.tutorialr.com/
http://creativecommons.org/licenses/by-sa/4.0/

23

Classes & Objects

C# uses a lot of types – in fact it’s known as a Strongly-typed language so that int can’t be set to anything

other than a whole number or double can be whole and decimal numbers and neither of those can contain

a string.

A class is the definition or design of an object – an object is an Instance of a class which when you’ve been

using int, string or bool those have been objects of those types, in dotnetfiddle.net you’ve been using one

class called Demo, like the following:

You can create your own class to contain the Methods, Properties and Members” that are needed to represent

a particular thing or group certain functionality together and all Classes derive from object so you can make

your own type and have it work how you want, you can use a class to represent something from the real-

world too.

When using multiple Classes in a programme you need a way to group them all together much like you put

methods and properties into a class to organise Classes too, the way of doing this is by creating a namespace,

they also use curly braces to define what goes inside the namespace, like a class does to define its scope, so

at the top of your application you use using to import any namespace such as System then below this you

define your own namespace to contain all the “class” items you create, here’s a simple example showing this

new structure:

using System;

namespace Workshop
{
 public class MyClass

{

}

}

http://www.tutorialr.com/
http://creativecommons.org/licenses/by-sa/4.0/

24

To write your own class to represent something in dotnetfiddle.net enter the following:

The class is used to represent a person and is called as so and appeared as the following:

It is declared as public so it can be used without restriction and it has two Properties these also use a different

way of writing the get and set so they just are string properties without a private member to represent them,

but a value such as _forename still could be used, the class used appeared as the following:

In the class of Demo an Instance of the class is created, this is done by using the name of the class, in this

case Person which takes the place of the type, then is followed by a name and this is set to a new item of

the class which is how the Instance is created, then within the curly braces the Properties of the class are set

to some values.

http://www.tutorialr.com/
http://creativecommons.org/licenses/by-sa/4.0/

25

Composition allows the creation of a class composed of other objects to enable more flexibility and

information that can be stored in an Instance of a class, for example could expand the class of Person as for

example as the following:

In this example, the class of Contact has been added as another class to represent Contact details such as

Email and Phone, see if can figure out how to set and output the Email Property.

Classes can share Properties and functionality of a Base class can use inheritance to Inherit or share functions

of another class, this allows you to create objects that have common features, there’s many real-world

examples where physical objects share similar features and in programming you can do much the same thing

and allows you to avoid repeating yourself, the language and it’s features are designed to help you make

sure you only do something once, or reuse something many times where needed.

An example of how to use inheritance in a programme by entering the following example into

dotnetfiddle.net.

http://www.tutorialr.com/
http://creativecommons.org/licenses/by-sa/4.0/

26

Inheritance can use a Base class to define any Properties or Methods that will be common to all the Classes

that will Inherit or derive from the class, shown in the following example:

http://www.tutorialr.com/
http://creativecommons.org/licenses/by-sa/4.0/

27

In this example is a Property which will be a common Property for any class that will inherit this, also there is

a Method which has been marked as virtual which allows any child Classes. Classes that use this class as their

Base class, to Implement their own behaviour for this Method such as in the following example:

This class inherits from the Shape class and adds its own unique Property and implements its behaviour of

that virtual Method from the Base class using the override Keyword, both the Rectangle and Triangle

Classes both implement their own way of working out the Area but the result and Method is used the same

way by anything that uses either child class, you can compare Rectangle with other the class of Triangle in

the following example:

Where the Area is worked out for a Triangle differently that the Rectangle, demonstrating the flexibility and

usefulness of inheritance.

http://www.tutorialr.com/
http://creativecommons.org/licenses/by-sa/4.0/

28

Interfaces

An interface is defined in a similar way to a class but there are no keywords such as public and private nor

are the statement blocks for a Method present and their name should start with I for Interface, Classes can

implement many Interfaces, but only Inherit from a one class.

To use an “interface” in dotnetfiddle.net enter the following:

http://www.tutorialr.com/
http://creativecommons.org/licenses/by-sa/4.0/

29

Libraries, Collections, Lambdas & LINQ and Generics

Libraries

Throughout the examples used with dotnetfiddle.net the using has been put at the top to include a

namespace, this is taking advantage of the .NET Framework which features many kinds of “namespace”

that can be used in an application that add features both complex and simple so many things don’t need to

be done again if they’ve been done already and many of these are contained in the .NET Framework class

Libraries such as System and System.Text used in previous examples.

To use another namespace in dotnetfiddle.net enter the following:

http://www.tutorialr.com/
http://creativecommons.org/licenses/by-sa/4.0/

30

Namespaces used in the previous examples were System, System.Text and System.Xml – the first is where

the main and common features such as the Console Methods that have been used like Console.WriteLine.

System.Text” is used for StringBuilder which has also been used before, in this case it’s used in combination

with System.Xml to create an XmlWriter – this is used to create an XML document which is a way of storing

data that can be read easily by a program or in the case written. There’s another use of using here to create

the XmlWriter to make sure it’s created at the top part and then closed or Disposed when finished.

Another example is to use XmlReader to read in XML and take advantage of another namespace which is

System.IO which allows input and output methods to be used in this case a StringReader to read some

existing XML as an input for an application.

In dotnetfiddle.net enter the following example:

http://www.tutorialr.com/
http://creativecommons.org/licenses/by-sa/4.0/

31

Collections

It’s possible to store multiple values of the same type, mentioned previously in the form of an Array, these

are normally declared with a fixed size and denoted using square brackets and can be used to store a

sequence of values of that type.

To use an Array in dotnetfiddle.net enter the following:

It is also possible to loop through an Array by Index where the first element is zero.

To loop through an Array this way, enter dotnetfiddle.net the following:

Arrays are built into C# and can be utilised for many things but they have limitations that their size must be

known in advance and often you won’t know what to store beforehand, there is another way to store multiple

items is with a collection.

There’s another way of storing items of a type, this is known as a Collection and there are two main kinds

which are List and Dictionary.

http://www.tutorialr.com/
http://creativecommons.org/licenses/by-sa/4.0/

32

The first type of collection is List where it is a list of a particular item so if it’s a List of int this would be

List<int> where the type of the list is within angle brackets, they are more flexible than an Array as it can

have as many items as you want and Collections have their own namespace which is

System.Collections.Generic.

To use a “List” of “int” in dotnetfiddle.net, enter the following:

It’s also possible to use a List of string in dotnetfiddle.net, enter the following:

In the first example, there is a List<int> of numbers which is added to using the Add Method to add

something to the List within a for loop. Then in the second foreach loop the items that were added are

output. Then in the second example there is a List<string> of letters which have been prepopulated, like the

Array and then the contents are output from a foreach loop.

http://www.tutorialr.com/
http://creativecommons.org/licenses/by-sa/4.0/

33

The second type of collection is Dictionary which is like List but has two parts, there is the Key which will

identify something that has been added, and Value which is the item that’s been added and like List the

Dictionary can have many types of Value but can also have types of Key but mainly string is the most

commonly used type for a Key and you can get values of a type by their Key.

To use a “Dictionary” by string of string in dotnetfiddle.net, enter the following:

In the example, there’s a Dictionary of string where the Key is also a string, it has an Add Method with the

Key and then the Value there there’s loop which uses the Keys Property which is a List of the Keys and then

output the item using the Key similar to an Array by using the square brackets.

http://www.tutorialr.com/
http://creativecommons.org/licenses/by-sa/4.0/

34

Lambdas & LINQ

C# has a special type of Method that can be used as an alternative to creating another named Method you

use but are created in-line with your code, they can be passed as a Parameter to other methods and these

are known as Lambda expressions.

To use a Lambda expression in C#, in dotnetfiddle.net enter the following:

In the example, there is a Func<int, int> which is a variable the Lambda is assigned to then to the right of

the = is the Lambda expression and there is two parts, the first is the Parameter passed in and then there is

a special operator => pronounced as “produces” which is followed by the code to execute and can be done

in one line and doesn’t require a return statement like a Method that returns a value would normally need.

To use multiple Parameters with a Lambda in dotnetfiddle.net by entering the following:

Lambda expressions are a powerful and easy way to access functionality without needing a separate Method

and can be reused in many places just like a Method but also passed into a Method like a Value can be.

http://www.tutorialr.com/
http://creativecommons.org/licenses/by-sa/4.0/

35

The language of C# is powerful but to add to this power is a way of querying sets and lists of data using LINQ

or Language-Integrated Query, which is a set of Extension Methods which are a special kind of static

Method to extend existing types with new functionality and in LINQ this is used extensively and makes

performing what would be complex tasks much easier and just requires the inclusion of another using for

System.Linq and they also make use of Lambda expressions.

The following examples will add to the previous, so to start will need a class and then a collection of them as

a List by entering in to dotnetfiddle.net the following:

In this example, there is a class of type of Person which has two Properties of string and another of int then

there is a List of Person which is then added to or populated with some values and this example will be

added to in subsequent examples.

http://www.tutorialr.com/
http://creativecommons.org/licenses/by-sa/4.0/

36

LINQ allows you to search for items within a collection that match a set of criteria and is the main component

of Language-integrated Query, which is to Query data, which can be done with where.

To use “where” with LINQ in dotnetfiddle.net, add into Main at the end the following:

In this part of the example there is the use of IEnumerable<Person> which is the type of item that. The

where uses a Lambda and the expression looks for any item that is in the List which has an Age value greater

than 40 and then outputs this value which should be 2 using another LINQ method of count.

You may have too many items in the collection or not have enough properties and you can use the select

Method in LINQ which can be a useful way of converting an existing Collection into other collections or

values.

To use select with LINQ in dotnetfiddle.net, add below last example the following:

In this part of the example the select is used to get the Forename for each Person in the Collection and will

return a collection of string Objects that are then looped though with a foreach statement to output each

Forename.

You may just want to get one item from a collection and you can do this in LINQ with First, Last and Single

to get an item or FirstOrDefault, LastOrDefault and SingleOrDefault where OrDefault is the default value

for a type which is usually null in case the value being looked for in the collection is not present.

To use first & last with LINQ in dotnetfiddle.net, add below last example the following:

http://www.tutorialr.com/
http://creativecommons.org/licenses/by-sa/4.0/

37

It is also possible to get information about a collection using LINQ with count, any and all - count was used

previously and will return the number of items in the collection but it can also take a Lambda” expression or

Predicate like a where does so you could count only certain things that match the expression. With any this

will check the collection and see if anything that matches the Predicate expression matches and will return

true if it does, and false if not and all which is like any except that all values must match to return true

otherwise it will return false.

To use count in dotnetfiddle.net, add below the last example the following:

To use any in dotnetfiddle.net, add below the last example the following:

To use all in dotnetfiddle.net, add below the last example the following:

The results of many of the LINQ queries shown have been of IEnumerable of a type such as int or string,

but there may be times where you need a different type than IEnumerable and LINQ has Extension Methods

that allow you to do this.

To get a List of the type returned by LINQ in dotnetfiddle.net, enter the following:

To get an Array of the type returned by LINQ in dotnetfiddle.net, enter the following:

LINQ is a very powerful addition to C# and there are many more ways you can use it to get various parts of

a collection, think of it as a search engine for your code, whatever information is in there, you can get at it

with LINQ expressions and can use them in combination with each other to make your applications much

more powerful than they would otherwise be and makes it easy and straightforward to manipulate data.

http://www.tutorialr.com/
http://creativecommons.org/licenses/by-sa/4.0/

38

Generics

C# contains many powerful features that are useful to allow the creation of software that can reuse or simplify

many complex but common programming tasks, as projects become more complex there needs to be a better

way to reuse code, to help with this C# includes a feature called Generics. Generics allows a class to take type

parameters allow for more functionality in much the same way as Methods can be made more powerful

because they take parameters. Generic Classes and Methods combine reusability and efficiency in a way that

non-generic alternatives can’t, they are most frequently used with collections in fact List and Dictionary used

previously are an example of Generics. When you encounter the < and > such as in List<int> the type within

them can be any type which is what makes them Generic – that is they can be any type of List or Dictionary

this type is usually indicated by using T and referred to as being type of T where T is the type.

To use Generics in C# enter in to dotnetfiddle.net the following:

In the example, there is a Container class which takes type of T denoted by <T> which will be the type, then

a value which is of type of T and a Get Method which returns type of T. Although this is a simple example

the Container class could be used with any type.

http://www.tutorialr.com/
http://creativecommons.org/licenses/by-sa/4.0/

39

To use another type in the previous example below the Console.WriteLine(name.Get()); line in

dotnetfiddle.net enter the following:

You can also use Generics to combine functionality needed such as creating a new instance of a class

whatever its type might be using with a Factory class with a Create Method to create a new instance of the

class.

To implement a basic Factory class in C#, enter in to dotnetfiddle.net the following:

http://www.tutorialr.com/
http://creativecommons.org/licenses/by-sa/4.0/

