
1

Output, Operators, Types & Variables and Input

Output

In this first example, you will learn about how to write some code to display Hello World, this is a classic

programming example that’s traditional start to learning any programming language!

Visit dotnetfiddle.net and in the large box define which namespace to use entering the following:

System is used to allow access to the Console to output “Hello World”, a namespace is a way of organising

groups of programming elements that can be used in the programme and the using statement should end

with a semicolon like most statements in C#.

The next thing to do is to define the class for the example called Demo by entering in to dotnetfiddle.net

the following:

Public is a Keyword that defines the access level of a class and how it may be used by other parts of the code

and in this case, anything can access it. The class Keyword is used to define classes and this also uses curly

braces to define the scope of the class.

The next thing to define is the Main Method which is the entry point for the example and is the first code to

be run - this Method should be defined as below:

Like a class, a method can also have an access level and again this is public so anything can access it, static

defines this Method as global but will go into this concept in more detail later and the void Keyword means

the Method doesn’t return a value and the brackets define any Parameters or none in this case, we’ll learn

about those later too.

public class Demo
{

}

public static void Main()
{

}

http://www.tutorialr.com/
http://creativecommons.org/licenses/by-sa/4.0/

2

Within the Main Method in dotnetfiddle.net the following should be entered:

Console is a type in the System namespace that can be used, here the WriteLine method is called and is

like the Main Method in the example as it is also declared as being static. Inside the brackets is a value being

passed as a Parameter, this is a string which is a set of text characters, in this case “Hello World”, the whole

application in dotnetfiddle.net should look as below:

You can then use the Run option to start the programme which will display the text “Hello World” in the

lower large box on dotnetfiddle.net or if Auto Run is Yes then it will run automatically.

This programme structure will be used in all subsequent examples so they’ll always start with the using

statements, followed by defining the class then the Main Method the example will use as its entry point

which is the first point that will be reached when the example is started.

Console.WriteLine("Hello World");

public class Demo
{
 public static void Main()

{
 Console.WriteLine("Hello World");

}
}

http://www.tutorialr.com/
http://creativecommons.org/licenses/by-sa/4.0/

3

Operators

C# supports many kinds of Operators which are symbols that specify which Operations such as mathematics.

We’ll cover some of the basic ones here such as addition and multiplication.

The first thing is to define the basic structure of a programme by entering the following in dotnetfiddle.net

in the main window:

// Code is a Comment which is defined by writing // before anything that can be included in the programme

but won’t be run as part of it such as reminders or explanations of what the code should do.

The first Operator to use is + which is used for addition so enter the following below // Code in

dotnetfiddle.net:

Then select Run in dotnetfiddle.net and this will display the answer as the output, it is also possible to use

other mathematical Operators so can change + to * for multiply, - for subtraction or / for division to see what

happens such as entering the following in dotnetfiddle.net:

You should see the appropriate answers appear in the output for each Operator that has been used whether

it is addition, multiplication, subtraction or division.

public class Demo
{
 public static void Main()

{
 // Code

}
}

Console.WriteLine(4 + 2);

Console.WriteLine(4 * 2);
Console.WriteLine(4 - 2);
Console.WriteLine(4 / 2);

http://www.tutorialr.com/
http://creativecommons.org/licenses/by-sa/4.0/

4

Types & Variables

C# is what’s known as a strongly typed language where every Variable has a type as does every expression

that has a value, there are many types available, some of which will be covered here.

The first thing is to define the basic structure of the code by entering the following in dotnetfiddle.net in

the main window:

The first way to use types is like algebra in mathematics, so enter the following below // Code:

int is the type which is an Integer which can contain large or small whole numbers, a is the name of the

variable and = is used to assign the value to the type, you can try changing the operator to * for multiply, -

for subtraction and finally / for division and check the answer it gives when use Run in dotnetfiddle.net

In mathematics, it of course it is possible to get answers that aren’t whole numbers so will need to use a type

that allows this so replace the code from before with the following:

double is a type that does support decimal places in numbers so need to remember to use the correct type

and you can use Run to see the correct answer.

public class Demo
{
 public static void Main()

{
 // Code

}
}

int a = 5;
int b = 2;
Console.WriteLine(a + b);

double a = 5;
double b = 2;
Console.WriteLine(a / b);

http://www.tutorialr.com/
http://creativecommons.org/licenses/by-sa/4.0/

5

Variables aren’t just used to do mathematics - they can be used to store anything for use in the application

either one or many times and can be changed with new values.

You can try this with string which represents a series of characters by entering in to dotnetfiddle.net the

following:

Text and Numbers relate to things you encounter day to day and can relate to but there are also Types that

are a bit more specific to programming, enter in to dotnetfiddle.net the following example:

You can then run this in dotnetfiddle.net, bool is a type to store Boolean values which can either be true or

false, in this example it will output true and uses another operator && which means “and” so if both a and

b are true the output will be true, it’s also possible to use || which means “or” to produce the same output

as if a or b are true, change the “Console.WriteLine” line to the following:

When run in dotnetfiddle.net this will output the opposite value as ! means not so if something is true it

becomes false and if it’s false it becomes true.

public class Demo
{
 public static void Main()

{
 string message = Hello World ;

 Console.WriteLine(message);
}

}

http://www.tutorialr.com/
http://creativecommons.org/licenses/by-sa/4.0/

6

Input

In the previous examples everything has been output to the Console but it is also possible to allow something

to be Input from the Console.

To create a simple input example by using dotnetfiddle.net and entering the following:

When Run in dotnetfiddle.net a “prompt” will appear below the code window > and can then type anything

there and end input by typing enter or return, this will then be output.

Another example is to enter a number to be used in a calculation by entering in to dotnetfiddle.net the

following:

By typing in a value for a or b can then output the sum of these values, another feature shown is that types

often have static Methods, in this case Parse which allows something to be converted to that type so when

Run in dotnetfiddle.net you can enter 1 then 2 to get the answer 3, it’s possible to change the operator to

ones used for int such as * for multiply, - for subtraction or / for divide – for that last one try changing int to

double to avoid losing anything after a decimal point like when doing 5 divided by 2.

http://www.tutorialr.com/
http://creativecommons.org/licenses/by-sa/4.0/

